Solvation structure dependent ion transport and desolvation mechanism for fast-charging Li-ion batteries

被引:1
|
作者
Fan, Zhenyu [1 ]
Zhang, Jingwei [1 ]
Wu, Lanqing [1 ]
Yu, Huaqing [1 ]
Li, Jia [1 ]
Li, Kun [1 ]
Zhao, Qing [1 ,2 ]
机构
[1] Nankai Univ, Key Lab Adv Energy Mat Chem, State Key Lab Adv Chem Power Sources, Frontiers Sci Ctr New Organ Matter,Coll Chem,,Mini, Tianjin 300071, Peoples R China
[2] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
LITHIUM; ELECTROLYTES; STABILITY;
D O I
10.1039/d4sc05464d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The solvation structures of Li+ in electrolytes play prominent roles in determining the fast-charging capabilities of lithium-ion batteries (LIBs), which are in urgent demand for smart electronic devices and electric vehicles. Nevertheless, a comprehensive understanding of how solvation structures affect ion transport through the electrolyte bulk and interfacial charge transfer reactions remains elusive. We report that the charge transfer reaction involving the desolvation process is the rate-determining step of the fast charging when ion conductivity reaches a certain value as determined by investigating electrolytes with eight conventional solvents (linear/cyclic carbonate/ether). The physicochemical characteristics of solvent molecules can result in strong ion-ion, moderate ion-dipole, strong ion-dipole, and weak ion-dipole/ion-ion interactions, respectively, in which the speed of the charge transfer reaction follows the above order of interactions. Among all solvents, dioxolane (DOL) is found to enable strong ion-ion interactions in electrolytes and thus exhibits exceptional fast-charging performance and it can still retain 60% of the initial capacity at 20C (1C = 170 mA g-1) with a polarization of merely 0.35 V. Further experimental characterization and theoretical calculation reveal that the aggregates in DOL electrolytes contribute to hopping assisted ion transport and facilitate the desolvation process of Li+. Our results deepen the fundamental understanding of the behavior of Li+ solvation and provide an effective guiding principle for electrolyte design for fast-charging batteries. Solvation structures significantly affect electrolyte kinetics, with notable enhancements from CIPs to SSIPs to AGGs. Electrolytes such as DOL Ele., with abundant AGGs, facilitate ion transport and desolvation through a hopping-assisted mechanism.
引用
收藏
页码:17161 / 17172
页数:12
相关论文
共 50 条
  • [31] Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis
    Chen, Yuxin
    Torres-Castro, Loraine
    Chen, Kuan-Hung
    Penley, Daniel
    Lamb, Joshua
    Karulkar, Mohan
    Dasgupta, Neil P.
    JOURNAL OF POWER SOURCES, 2022, 539
  • [32] Aligned NMC811 electrodes by functionalized conductive graphite flakes for fast-charging Li-ion battery
    Yang, Kang
    Jiang, Yilan
    Huang, Chun
    NEXT ENERGY, 2024, 2
  • [33] A disordered rock salt anode for fast-charging lithium-ion batteries
    Liu, Haodong
    Zhu, Zhuoying
    Yan, Qizhang
    Yu, Sicen
    He, Xin
    Chen, Yan
    Zhang, Rui
    Ma, Lu
    Liu, Tongchao
    Li, Matthew
    Lin, Ruoqian
    Chen, Yiming
    Li, Yejing
    Xing, Xing
    Choi, Yoonjung
    Gao, Lucy
    Cho, Helen Sung-yun
    An, Ke
    Feng, Jun
    Kostecki, Robert
    Amine, Khalil
    Wu, Tianpin
    Lu, Jun
    Xin, Huolin L.
    Ong, Shyue Ping
    Liu, Ping
    NATURE, 2020, 585 (7823) : 63 - +
  • [34] Understanding the effect of salt concentrations on fast charging performance of Li-ion cells
    Wu, Xianyang
    Ma, Lin
    Liu, Jue
    Zhao, Kejie
    Wood, David L., III
    Du, Zhijia
    JOURNAL OF POWER SOURCES, 2022, 545
  • [35] Phosphorus-based anodes for fast-charging alkali metal ion batteries
    Lan, Xuexia
    Li, Zhen
    Zeng, Yi
    Han, Cuiping
    Peng, Jing
    Cheng, Hui-Ming
    ECOMAT, 2024, 6 (05)
  • [36] Application of Spectroscopic Techniques in the Development of Fast-Charging Lithium-Ion Batteries
    Cheng, Xin
    Zhao, Jingteng
    Xiao, Huang
    Song, Congying
    Li, Fang
    Li, Guoxing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (44) : 18678 - 18694
  • [37] Expanding the lifetime of Li-ion batteries through optimization of charging profiles
    Maia, Leonardo K. K.
    Druenert, Lukas
    La Mantia, Fabio
    Zondervan, Edwin
    JOURNAL OF CLEANER PRODUCTION, 2019, 225 : 928 - 938
  • [38] Competitive Coordination of Ternary Anions Enabling Fast Li-Ion Desolvation for Low-Temperature Lithium Metal Batteries
    Liang, Ping
    Hu, Honglu
    Dong, Yang
    Wang, Zhaodong
    Liu, Kuiming
    Ding, Guoyu
    Cheng, Fangyi
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (16)
  • [39] Separator with active coating for fast and stable Li-ion batteries
    Nitou, Modeste Venin Mendieev
    Tang, Mengjun
    Niu, Yinghua
    Pang, Yashuai
    Wan, Zhao
    Mawuli, Smith Ernest
    Leoba, Jonathan Anto
    Xiaodong, Fang
    Lv, Weiqiang
    JOURNAL OF POWER SOURCES, 2024, 602
  • [40] Recent developments in high-power Li-ion battery electrode architecture and active materials: The fast-charging challenge
    Pelletier-Villeneuve, Brittany
    Schougaard, Steen B.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 45