Fractional Hermite-Hadamard-Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory

被引:0
作者
Shah, Ahsan Fareed [1 ]
Ozcan, Serap [2 ]
Vivas-Cortez, Miguel [3 ]
Saleem, Muhammad Shoaib [1 ]
Kashuri, Artion [4 ]
机构
[1] Univ Okara, Dept Math, Okara 56300, Pakistan
[2] Kirklareli Univ, Fac Arts & Sci, Dept Math, TR-39100 Kirklareli, Turkiye
[3] Pontificia Univ Catolica Ecuador, Fac Ciencias Nat & Exactas, Escuela Ciencias Fis & Matemat, Quito 17012184, Ecuador
[4] Polytech Univ Tirana, Dept Math Engn, Tirana 1001, Albania
关键词
Hermite-Hadamard; Jensen-Mercer inclusions; interval-valued functions; mean-square fractional integral; gamma-convexity; interval-valued stochastic gamma-convexity with center-radius order relation; INTEGRAL-INEQUALITIES; CALCULUS;
D O I
10.3390/fractalfract8070408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new definition of the gamma-convex stochastic processes (CSP) using center and radius (CR) order with the notion of interval valued functions (C.RI.V). By utilizing this definition and Mean-Square Fractional Integrals, we generalize fractional Hermite-Hadamard-Mercer-type inclusions for generalized C.RI.V versions of convex, tgs-convex, P-convex, exponential-type convex, Godunova-Levin convex, s-convex, Godunova-Levin s-convex, h-convex, n-polynomial convex, and fractional n-polynomial (CSP). Also, our work uses interesting examples of C.RI.V(CSP) with Python-programmed graphs to validate our findings using an extension of Mercer's inclusions with applications related to entropy and information theory.
引用
收藏
页数:26
相关论文
共 57 条
  • [1] Jensen, Ostrowski and Hermite-Hadamard type inequalities for h-convex stochastic processes by means of center-radius order relation
    Abbas, Mujahid
    Afzal, Waqar
    Botmart, Thongchai
    Galal, Ahmed M.
    [J]. AIMS MATHEMATICS, 2023, 8 (07): : 16013 - 16030
  • [2] Hyers-Ulam Stability of 2D-Convex Mappings and Some Related New Hermite-Hadamard, Pachpatte, and Fejér Type Integral Inequalities Using Novel Fractional Integral Operators via Totally Interval-Order Relations with Open Problem
    Afzal, Waqar
    Breaz, Daniel
    Abbas, Mujahid
    Cotirla, Luminita-Ioana
    Khan, Zareen A.
    Rapeanu, Eleonora
    [J]. MATHEMATICS, 2024, 12 (08)
  • [3] Some novel Kulisch-Miranker type inclusions for a generalized class of Godunova-Levin stochastic processes
    Afzal, Waqar
    Aloraini, Najla M.
    Abbas, Mujahid
    Ro, Jong-Suk
    Zaagan, Abdullah A.
    [J]. AIMS MATHEMATICS, 2024, 9 (02): : 5122 - 5146
  • [4] Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation
    Afzal, Waqar
    Nazeer, Waqas
    Botmart, Thongchai
    Treanta, Savin
    [J]. AIMS MATHEMATICS, 2023, 8 (01): : 1696 - 1712
  • [5] Some H-Godunova-Levin Function Inequalities Using Center Radius (Cr) Order Relation
    Afzal, Waqar
    Abbas, Mujahid
    Macias-Diaz, Jorge E.
    Treanta, Savin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [6] Alomari M., 2009, RGMIA RES REP COLL, V12, P9
  • [7] [Anonymous], 2015, Progress in Fractional Differentiation Applications, DOI DOI 10.12785/PFDA/010201
  • [8] Integral inequalities involving generalized Erdelyi-Kober fractional integral operators
    Baleanu, Dumitru
    Purohit, Sunil Dutt
    Prajapati, Jyotindra C.
    [J]. OPEN MATHEMATICS, 2016, 14 : 89 - 99
  • [9] A study of interval metric and its application in multi-objective optimization with interval objectives
    Bhunia, Asoke Kumar
    Samanta, Subhra Sankha
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2014, 74 : 169 - 178
  • [10] Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities
    Bombardelli, Mea
    Varosanec, Sanja
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) : 1869 - 1877