consICA: an R package for robust reference-free deconvolution of multi-omics data

被引:0
|
作者
Chepeleva, Maryna [1 ,2 ]
Kaoma, Tony [3 ]
Zinovyev, Andrei [4 ]
Toth, Reka [1 ,3 ]
Nazarov, Petr, V [1 ,3 ]
机构
[1] Luxembourg Inst Hlth, Dept Canc Res, Multi Data Sci Res Grp, 1AB Rue Thomas Edison, L-1445 Strassen, Luxembourg
[2] Univ Luxembourg, Fac Sci Technol & Med, L-4365 Esch Sur Alzette, Luxembourg
[3] Luxembourg Inst Hlth, Dept Med Informat, Bioinformat & AI Unit, L-1445 Strassen, Luxembourg
[4] Evotec, In Silico R&D, F-31100 Toulouse, France
来源
BIOINFORMATICS ADVANCES | 2024年 / 4卷 / 01期
关键词
RNA;
D O I
10.1093/bioadv/vbae102
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation Deciphering molecular signals from omics data helps understanding cellular processes and disease progression. Effective algorithms for extracting these signals are essential, with a strong emphasis on robustness and reproducibility.Results R/Bioconductor package consICA implements consensus independent component analysis (ICA)-a data-driven deconvolution method to decompose heterogeneous omics data and extract features suitable for patient stratification and multimodal data integration. The method separates biologically relevant molecular signals from technical effects and provides information about the cellular composition and biological processes. Build-in annotation, survival analysis, and report generation provide useful tools for the interpretation of extracted signals. The implementation of parallel computing in the package ensures efficient analysis using modern multicore systems. The package offers a reproducible and efficient data-driven solution for the analysis of complex molecular profiles, with significant implications for cancer research.Availability and implementation The package is implemented in R and available under MIT license at Bioconductor (https://bioconductor.org/packages/consICA) or at GitHub (https://github.com/biomod-lih/consICA).
引用
收藏
页数:4
相关论文
共 50 条
  • [1] timeOmics: an R package for longitudinal multi-omics data integration
    Bodein, Antoine
    Scott-Boyer, Marie-Pier
    Perin, Olivier
    Cao, Kim-Anh Le
    Droit, Arnaud
    BIOINFORMATICS, 2022, 38 (02) : 577 - 579
  • [2] An integrated web server for multi-omics data deconvolution
    Lu, Xiaoyu
    Dang, Pengtao
    Tu, Szu-Wei
    Chang, Wennan
    Wan, Changlin
    Zhang, Chi
    Cao, Sha
    CANCER RESEARCH, 2020, 80 (16)
  • [3] ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes
    Anand, Lakshay
    Lopez, Carlos M. Rodriguez
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [4] ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes
    Lakshay Anand
    Carlos M. Rodriguez Lopez
    BMC Bioinformatics, 23
  • [5] STsisal: a reference-free deconvolution pipeline for spatial transcriptomics data
    Fu, Yinghao
    Tian, Leqi
    Zhang, Weiwei
    FRONTIERS IN GENETICS, 2025, 16
  • [6] PathwayPCA: an R/Bioconductor Package for Pathway Based Integrative Analysis of Multi-Omics Data
    Odom, Gabriel J.
    Ban, Yuguang
    Colaprico, Antonio
    Liu, Lizhong
    Silva, Tiago Chedraoui
    Sun, Xiaodian
    Pico, Alexander R.
    Zhang, Bing
    Wang, Lily
    Chen, Xi
    PROTEOMICS, 2020, 20 (21-22)
  • [7] CorDiffViz: an R package for visualizing multi-omics differential correlation networks
    Shiqing Yu
    Mathias Drton
    Daniel E. L. Promislow
    Ali Shojaie
    BMC Bioinformatics, 22
  • [8] CorDiffViz: an R package for visualizing multi-omics differential correlation networks
    Yu, Shiqing
    Drton, Mathias
    Promislow, Daniel E. L.
    Shojaie, Ali
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [9] MOVICS: an R package for multi-omics integration and visualization in cancer subtyping
    Lu, Xiaofan
    Meng, Jialin
    Zhou, Yujie
    Jiang, Liyun
    Yan, Fangrong
    BIOINFORMATICS, 2020, 36 (22-23) : 5539 - 5541
  • [10] trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data
    Ou, Jianhong
    Zhu, Lihua Julie
    NATURE METHODS, 2019, 16 (06) : 453 - 454