SzCORE: Seizure Community Open-Source Research Evaluation framework for the validation of electroencephalography-based automated seizure detection algorithms

被引:5
作者
Dan, Jonathan [1 ]
Pale, Una [1 ]
Amirshahi, Alireza [1 ]
Cappelletti, William [2 ]
Ingolfsson, Thorir Mar [3 ]
Wang, Xiaying [3 ,4 ]
Cossettini, Andrea [3 ]
Bernini, Adriano [5 ]
Benini, Luca [3 ,6 ]
Beniczky, Sandor [7 ,8 ]
Atienza, David [1 ]
Ryvlin, Philippe [5 ]
机构
[1] Ecole Polytech Fed Lausanne, Embedded Syst Lab, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, LTS4, Lausanne, Switzerland
[3] Swiss Fed Inst Technol, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[4] Swiss Univ Tradit Chinese Med, Res Dept, Zurzach, Switzerland
[5] CHU Vaudois, Serv Neurol, Lausanne, Switzerland
[6] Univ Bologna, Dept Elect Elect & Informat Engn, Bologna, Italy
[7] Aarhus Univ, Aarhus Univ Hosp, Dianalund, Denmark
[8] Aarhus Univ, Danish Epilepsy Ctr, Dianalund, Denmark
基金
瑞士国家科学基金会;
关键词
brain imaging data structure; electroencephalography; machine-learning benchmark; seizure detection algorithms;
D O I
10.1111/epi.18113
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The need for high-quality automated seizure detection algorithms based on electroencephalography (EEG) becomes ever more pressing with the increasing use of ambulatory and long-term EEG monitoring. Heterogeneity in validation methods of these algorithms influences the reported results and makes comprehensive evaluation and comparison challenging. This heterogeneity concerns in particular the choice of datasets, evaluation methodologies, and performance metrics. In this paper, we propose a unified framework designed to establish standardization in the validation of EEG-based seizure detection algorithms. Based on existing guidelines and recommendations, the framework introduces a set of recommendations and standards related to datasets, file formats, EEG data input content, seizure annotation input and output, cross-validation strategies, and performance metrics. We also propose the EEG 10-20 seizure detection benchmark, a machine-learning benchmark based on public datasets converted to a standardized format. This benchmark defines the machine-learning task as well as reporting metrics. We illustrate the use of the benchmark by evaluating a set of existing seizure detection algorithms. The SzCORE (Seizure Community Open-Source Research Evaluation) framework and benchmark are made publicly available along with an open-source software library to facilitate research use, while enabling rigorous evaluation of the clinical significance of the algorithms, fostering a collective effort to more optimally detect seizures to improve the lives of people with epilepsy.
引用
收藏
页数:11
相关论文
共 44 条
[1]   SeizFt: Interpretable Machine Learning for Seizure Detection Using Wearables [J].
Al-Hussaini, Irfan ;
Mitchell, Cassie S. .
BIOENGINEERING-BASEL, 2023, 10 (08)
[2]   Seizure forecasting: Where do we stand? [J].
Andrzejak, Ralph G. ;
Zaveri, Hitten P. ;
Schulze-Bonhage, Andreas ;
Leguia, Marc G. ;
Stacey, William C. ;
Richardson, Mark P. ;
Kuhlmann, Levin ;
Lehnertz, Klaus .
EPILEPSIA, 2023, 64 :S62-S71
[3]  
[Anonymous], 2023, Seizure Detection ChallengeIEEE ICASSP
[4]  
[Anonymous], 2020, Neureka IEEE SPMB 2020
[5]   Seizure detection using scalp-EEG [J].
Baumgartner, Christoph ;
Koren, Johannes P. .
EPILEPSIA, 2018, 59 :14-22
[6]   Standardized computer-based organized reporting of EEG: SCORE - Second version [J].
Beniczky, Sandor ;
Aurlien, Harald ;
Brogger, Jan C. ;
Hirsch, Lawrence J. ;
Schomer, Donald L. ;
Trinka, Eugen ;
Pressler, Ronit M. ;
Wennberg, Richard ;
Visser, Gerhard H. ;
Eisermann, Monika ;
Diehl, Beate ;
Lesser, Ronald P. ;
Kaplan, Peter W. ;
Sylvie Nguyen The Tich ;
Lee, Jong Woo ;
Martins-da-Silva, Antonio ;
Stefan, Hermann ;
Neufeld, Miri ;
Rubboli, Guido ;
Fabricius, Martin ;
Gardella, Elena ;
Terney, Daniella ;
Meritam, Pirgit ;
Eichele, Tom ;
Asano, Eishi ;
Cox, Fieke ;
Boas, Walter van Emde ;
Mameniskiene, Ruta ;
Marusic, Petr ;
Zarubova, Jana ;
Schmitt, Friedhelm C. ;
Rosen, Ingmar ;
Fuglsang-Frederiksen, Anders ;
Ikeda, Akio ;
MacDonald, David B. ;
Terada, Kiyohito ;
Ugawa, Yoshikazu ;
Zhou, Dong ;
Herman, Susan T. .
CLINICAL NEUROPHYSIOLOGY, 2017, 128 (11) :2334-2346
[7]   Epileptic Seizure Detection in EEG via Fusion of Multi-View Attention-Gated U-Net Deep Neural Networks [J].
Chatzichristos, C. ;
Dan, J. ;
Narayanan, A. Mundanad ;
Seeuws, N. ;
Vandecasteele, K. ;
De Vos, M. ;
Bertrand, A. ;
Van Huffel, S. .
2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
[8]  
Chatzichristos C., 2023, SeizeIT1, DOI DOI 10.48804/P5Q0OJ
[9]   Multimodal detection of typical absence seizures in home environment with wearable electrodes [J].
Chatzichristos, Christos ;
Swinnen, Lauren ;
Macea, Jaiver ;
Bhagubai, Miguel ;
Van Paesschen, Wim ;
De Vos, Maarten .
FRONTIERS IN SIGNAL PROCESSING, 2022, 2
[10]   Computationally-Efficient Algorithm for Real-Time Absence Seizure Detection in Wearable Electroencephalography [J].
Dan, Jonathan ;
Vandendriessche, Benjamin ;
Van Paesschen, Wim ;
Weckhuysen, Dorien ;
Bertrand, Alexander .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2020, 30 (11)