Chiral symmetry restoration at finite temperature in a model with manifest confinement

被引:4
作者
Glozman, L. Ya. [1 ]
Nefediev, A. V. [2 ,3 ]
Wagenbrunn, R. [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
[2] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia
[3] Inst Super Tecn, CeFEMA, Ctr Phys & Engn Adv Mat, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
关键词
QCD phase diagram; Confinement; Chiral spin symmetry; Chiral symmetry; QUARK-MODEL; QCD; INVARIANT; BREAKING; DENSITY; VACUUM;
D O I
10.1016/j.physletb.2024.138707
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Multiple lattice evidences support the existence of a confining but chirally symmetric regime of QCD above the chiral symmetry restoration crossover at T-ch similar or equal to 155 MeV. This regime is characterised by an approximate chiral spin symmetry of the partition function, which is a symmetry of the colour charge and the confining electric part of the QCD Lagrangian. It is traditionally believed that confinement should automatically induce spontaneous breaking of chiral symmetry, which would preclude the existence of a confining but chirally symmetric regime of QCD at high temperatures. We employ a well-known solvable quark model for QCD in 3+1 dimensions that is chirally symmetric and manifestly confining and argue that while confinement indeed induces dynamical breaking of chiral symmetry at T = 0, a chiral restoration phase transition takes place at some critical temperature T-ch. Above this temperature, the spectrum of the model consists of chirally symmetric hadrons with approximate chiral spin symmetry.
引用
收藏
页数:5
相关论文
共 50 条
[1]   CHIRAL SYMMETRY-BREAKING IN COULOMB GAUGE QCD [J].
ADLER, SL ;
DAVIS, AC .
NUCLEAR PHYSICS B, 1984, 244 (02) :469-491
[2]   Aspects of the confinement mechanism in Coulomb-gauge QCD [J].
Alkofer, R ;
Kloker, M ;
Krassnigg, A ;
Wagenbrunn, RF .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[3]   INSTABILITY OF THE CHIRAL-INVARIANT VACUUM FOR A CONFINING POTENTIAL [J].
AMER, A ;
LEYAOUANC, A ;
OLIVER, L ;
PENE, O ;
RAYNAL, JC .
PHYSICAL REVIEW LETTERS, 1983, 50 (02) :87-90
[4]   The QCD transition temperature: results with physical masses in the continuum limit II [J].
Aoki, Yasumichi ;
Borsanyi, Szabolcs ;
Duerr, Stephan ;
Fodor, Zoltan ;
Katz, Sandor D. ;
Krieg, Stefan ;
Szabo, Kalman .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06)
[5]  
ASAKAWA M, 1989, NUCL PHYS A, V504, P668
[6]  
Bala D, 2024, Arxiv, DOI arXiv:2310.13476
[7]   THEORY OF SUPERCONDUCTIVITY [J].
BARDEEN, J ;
COOPER, LN ;
SCHRIEFFER, JR .
PHYSICAL REVIEW, 1957, 108 (05) :1175-1204
[8]   MICROSCOPIC THEORY OF SUPERCONDUCTIVITY [J].
BARDEEN, J ;
COOPER, LN ;
SCHRIEFFER, JR .
PHYSICAL REVIEW, 1957, 106 (01) :162-164
[9]   POINCARE-INVARIANT AND GAUGE-INVARIANT 2-DIMENSIONAL QUANTUM CHROMODYNAMICS [J].
BARS, I ;
GREEN, MB .
PHYSICAL REVIEW D, 1978, 17 (02) :537-545
[10]   Chiral crossover in QCD at zero and non-zero chemical potentials HotQCD Collaboration [J].
Bazavov, A. ;
Ding, H-T ;
Hegde, R. ;
Kaczmarek, O. ;
Karsch, F. ;
Karthik, N. ;
Laermann, E. ;
Lahiri, Anirban ;
Larsen, R. ;
Li, S-T ;
Mukherjee, Swagato ;
Ohno, H. ;
Petreczky, R. ;
Sandmeyer, H. ;
Schmidt, C. ;
Sharma, S. ;
Steinbrecher, R. .
PHYSICS LETTERS B, 2019, 795 :15-21