Real-Time Dense Visual SLAM with Neural Factor Representation

被引:0
作者
Wei, Weifeng [1 ]
Wang, Jie [2 ]
Xie, Xiaolong [3 ]
Liu, Jie [2 ]
Su, Pengxiang [2 ]
机构
[1] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Sch Software, Nanchang 330031, Peoples R China
[3] Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
dense visual SLAM; computer vision; neural implicit representation; feature integration rendering;
D O I
10.3390/electronics13163332
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Developing a high-quality, real-time, dense visual SLAM system poses a significant challenge in the field of computer vision. NeRF introduces neural implicit representation, marking a notable advancement in visual SLAM research. However, existing neural implicit SLAM methods suffer from long runtimes and face challenges when modeling complex structures in scenes. In this paper, we propose a neural implicit dense visual SLAM method that enables high-quality real-time reconstruction even on a desktop PC. Firstly, we propose a novel neural scene representation, encoding the geometry and appearance information of the scene as a combination of the basis and coefficient factors. This representation allows for efficient memory usage and the accurate modeling of high-frequency detail regions. Secondly, we introduce feature integration rendering to significantly improve rendering speed while maintaining the quality of color rendering. Extensive experiments on synthetic and real-world datasets demonstrate that our method achieves an average improvement of more than 60% for Depth L1 and ATE RMSE compared to existing state-of-the-art methods when running at 9.8 Hz on a desktop PC with a 3.20 GHz Intel Core i9-12900K CPU and a single NVIDIA RTX 3090 GPU. This remarkable advancement highlights the crucial importance of our approach in the field of dense visual SLAM.
引用
收藏
页数:17
相关论文
共 33 条
  • [1] CodeSLAM-Learning a Compact, Optimisable Representation for Dense Visual SLAM
    Bloesch, Michael
    Czarnowski, Jan
    Clark, Ronald
    Leutenegger, Stefan
    Davison, Andrew J.
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2560 - 2568
  • [2] ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM
    Campos, Carlos
    Elvira, Richard
    Gomez Rodriguez, Juan J.
    Montiel, Jose M. M.
    Tardos, Juan D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) : 1874 - 1890
  • [3] Efficient Geometry-aware 3D Generative Adversarial Networks
    Chan, Eric R.
    Lin, Connor Z.
    Chan, Matthew A.
    Nagano, Koki
    Pan, Boxiao
    de Mello, Shalini
    Gallo, Orazio
    Guibas, Leonidas
    Tremblay, Jonathan
    Khamis, Sameh
    Karras, Tero
    Wetzstein, Gordon
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16102 - 16112
  • [4] Chen AP, 2023, Arxiv, DOI arXiv:2302.01226
  • [5] TensoRF: Tensorial Radiance Fields
    Chen, Anpei
    Xu, Zexiang
    Geiger, Andreas
    Yu, Jingyi
    Su, Hao
    [J]. COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 : 333 - 350
  • [6] Cignoni P, 2008, MESHLAB OPEN SOURCE, V1, P129, DOI DOI 10.2312/LOCALCHAPTEREVENTS/ITALCHAP/ITALIANCHAPCONF2008/129-136
  • [7] ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
    Dai, Angela
    Chang, Angel X.
    Savva, Manolis
    Halber, Maciej
    Funkhouser, Thomas
    Niessner, Matthias
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2432 - 2443
  • [8] BundleFusion: Real-Time Globally Consistent 3D Reconstruction Using On-the-Fly Surface Reintegration
    Dai, Angela
    Niessner, Matthias
    Zollhofer, Michael
    Izadi, Shahram
    Theobalt, Christian
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (03):
  • [9] Han K, 2023, Arxiv, DOI arXiv:2305.17916
  • [10] ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields
    Johari, Mohammad Mahdi
    Carta, Camilla
    Fleuret, Francois
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17408 - 17419