Innovative iron-manganese modified microalgae biochar for efficient phosphate iron removal from water: Preparation and adsorption mechanisms

被引:3
|
作者
Fu, Caixia [1 ]
Zhou, Manhuan [1 ,3 ]
Song, Wei [4 ]
Yang, Gaixiu [1 ]
Feng, Pingzhong [1 ]
Chulalaksananukul, Warawut [5 ]
Zhu, Shunni [1 ]
Huang, Kai [2 ]
Wang, Zhongming [1 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China
[2] Guangxi Acad Sci, Inst Ecoenvironm Res, Guangxi Key Lab Biorefinery, Natl Key Lab Non Food Biomass Energy Technol, 98 Daling Rd, Nanning 530007, Peoples R China
[3] Univ Sci & Technol China, Sch Energy Sci & Engn, Hefei 230026, Peoples R China
[4] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Peoples R China
[5] Chulalongkorn Univ, Fac Sci, Dept Bot, Bangkok 10330, Thailand
基金
中国博士后科学基金;
关键词
Microalgae biochar; Phosphate; Adsorption; Water treatment; Sustainable materials; AQUEOUS-SOLUTION; POROUS BIOCHAR; WASTE-WATER; PHOSPHORUS; RECOVERY; OPTIMIZATION; EQUILIBRIUM; PERFORMANCE; COMPOSITES; PYROLYSIS;
D O I
10.1016/j.jwpe.2024.106051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study developed a novel FeMn composite biochar (FMBC) with the pyrolysis raw resource of Chlorella, applying for phosphates removal from the aqueous. Under optimal conditions, the FMBC prepared from microalgae achieved a phosphate removal rate of approximately 91.6 % (adsorption capacity: 23.23 mg/g) within 120 min, demonstrating superior adsorption performance compared to the pristine biochar. Response Surface Methodology (RSM) was applied for FMBC preparation optimization. To improve the metal loading capacity of biochar, Ethylene Diamine Tetraacetic Acid (EDTA) was used as a chelating agent during the preparation process. The optimum preparation conditions for FMBC were Fe/biomass(w/w) ratio of 1.25, Mn/biomass(w/w) ratio of 1.10, pyrolysis time of 120 min, and pyrolysis temperature of 650 degrees C, which presented a large specific surface area (14.681 m(2)/g), pore volume (0.036 cm(3)/g) with the rich oxygen-containing functional groups. Phosphorus removal kinetic and isotherm process were better described by pseudo-second-order model and the Dubinin-Radushkevinch (D-R) isotherm. In addition, the optimal adsorption conditions for FMBC were as follows: biochar dosage of 0.1 g, initial pH of 7.0, adsorption temperature of 25 degrees C, and initial phosphate concentration of 50 mg/L. Physical adsorption, surface complexation, precipitation, electrostatic attractions, and ion exchange were responsible for phosphate adsorption process by FMBC. The main innovation of this study is the use of explosive growth algae to prepare metal-modified biochar for phosphorus removal from water bodies, to realize the goals of resource utilization of waste biomass and eutrophication control in water, which are significant for sustainable development.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Co-adsorption performance and mechanism of ammonium and phosphate by iron-modified biochar in water
    Huang, Zixuan
    Chang, Bokun
    Tang, Yuan
    Li, Qiao
    Zhang, Zhixin
    Wei, Shiyu
    Chang, Xinyi
    Yang, Yajun
    Xu, Chenyang
    Hu, Feinan
    Lv, Jialong
    Du, Wei
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 67
  • [2] Mercury removal from drinking water by single iron and binary iron-manganese oxyhydroxides
    Kokkinos, Evgenios
    Simeonidis, Konstantinos
    Zouboulis, Anastasios
    Mitrakas, Manassis
    DESALINATION AND WATER TREATMENT, 2015, 54 (08) : 2082 - 2090
  • [3] Phosphate Adsorption onto Bagasse Iron Oxide Biochar: Parameter Optimization, Kinetic Analysis, and Study of Mechanisms
    Zhang, Qing
    Ding, Yan-mei
    Lu, Lin
    Li, Jing-xi
    Liang, Mei-na
    Zhu, Yi-nian
    BIORESOURCES, 2021, 16 (01) : 1335 - 1357
  • [4] Adsorptive removal of phosphate from water with biochar from acacia tree modified with iron and magnesium oxides
    Manawi, Yehia
    Al-Gaashani, Rashad
    Simson, Simjo
    Tong, Yongfeng
    Lawler, Jenny
    Kochkodan, Viktor
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Preparation of iron/calcium-modified biochar for phosphate removal from industrial wastewater
    Ou, Wenjuan
    Lan, Xin
    Guo, Jing
    Cai, Aimin
    Liu, Peng
    Liu, Na
    Liu, YingYing
    Lei, Yutao
    JOURNAL OF CLEANER PRODUCTION, 2023, 383
  • [6] PREPARATION AND PERFORMANCE OF MAGNETIC ZIRCONIUM-IRON OXIDE NANOPARTICLES LOADED ON PALYGORSKITE IN THE ADSORPTION OF PHOSPHATE FROM WATER
    Song, Xiaoshuang
    Hao, Yanling
    Gao, Qiqi
    Cheng, Long
    QUIMICA NOVA, 2022, 45 (10): : 1214 - 1222
  • [7] Synthesis and phosphate adsorption performance of elephant dung biochar modified with magnesium and iron
    Abeysinghe, Navod
    Jetsrisuparb, Kaewta
    Karunarathna, K. H. T.
    Chandana, E. P. S.
    Suwanree, Siraprapa
    Kasemsiri, Pornnapa
    Chindaprasirt, Prinya
    Knijnenburg, Jesper T. N.
    JOURNAL OF METALS MATERIALS AND MINERALS, 2022, 32 (01): : 124 - 133
  • [8] Impregnated Activated Carbons with Binary Oxides of Iron-Manganese for Efficient Cr(VI) Removal from Water
    Tolkou, Athanasia K.
    Vaclavikova, Miroslava
    Gallios, George P.
    WATER AIR AND SOIL POLLUTION, 2022, 233 (08)
  • [9] Simultaneous adsorption of tetracycline, ammonium and phosphate from wastewater by iron and nitrogen modified biochar: Kinetics, isotherm, thermodynamic and mechanism
    Li, Xiumin
    Shi, Jingxin
    CHEMOSPHERE, 2022, 293
  • [10] Adsorption Performance of Cobalt, Manganese, and Iron Modified Graphene Oxide for Bromophenol Blue Removal from Water
    Ortun, Hasan
    Karapinar, Nazan
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 95 (SUPPL 1) : S179 - S188