Murmurations of Elliptic Curves

被引:2
作者
He, Yang-Hui [1 ,2 ]
Lee, Kyu-Hwan [3 ,4 ]
Oliver, Thomas [5 ]
Pozdnyakov, Alexey [3 ]
机构
[1] Royal Inst Great Britain, London Inst Math Sci, London, England
[2] City Univ London, Dept Math, London, England
[3] Univ Connecticut, Dept Math, Storrs, CT USA
[4] Korea Inst Adv Study, Seoul, South Korea
[5] Univ Westminster, London, England
基金
英国工程与自然科学研究理事会;
关键词
Elliptic curves; L-functions; principal component analysis; logistic regression; machine learning;
D O I
10.1080/10586458.2024.2382361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the average value of the Frobenius trace at p over elliptic curves in a fixed conductor range with given rank. Plotting this average as p varies over the primes yields a striking oscillating pattern, the details of which vary with the rank. Based on this observation, we perform various data-scientific experiments with the goal of classifying elliptic curves according to their ranks.
引用
收藏
页数:13
相关论文
共 20 条
[1]   Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0 [J].
Bhargava, Manjul ;
Shankar, Arul .
ANNALS OF MATHEMATICS, 2015, 181 (02) :587-621
[2]   Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves [J].
Bhargava, Manjul ;
Shankar, Arul .
ANNALS OF MATHEMATICS, 2015, 181 (01) :191-242
[3]  
Breuil C., 2001, J. Am. Math. Soc, V14, P843, DOI [10.1090/S0894-0347-01-00370-8, DOI 10.1090/S0894-0347-01-00370-8]
[4]  
Bujanovic Z, 2024, Arxiv, DOI arXiv:2403.17626
[5]  
Cremona John, Elliptic curve data
[6]  
Elkies N., 2007, Oberwolfach Rep, V4, P1992
[7]  
He Yang-Hui, 2023, Journal of Symbolic Computation, DOI 10.1016/j.jsc.2022.08.017
[8]  
He Y.-H., 2022, Math. Comput. Geom. Data, V2, P49, DOI [DOI 10.4310/MCGD.2022.V2.N1.A2, 10.4310/MCGD.2022.v2.n1.a2]
[9]  
He Y.-H., Murmurations of L-functions
[10]   Machine-learning the Sato-Tate conjecture [J].
He, Yang-Hui ;
Lee, Kyu-Hwan ;
Oliver, Thomas .
JOURNAL OF SYMBOLIC COMPUTATION, 2022, 111 :61-72