Quantification of CO2 Emissions from Three Power Plants in China Using OCO-3 Satellite Measurements

被引:1
作者
Yang, Yang [1 ,2 ,5 ]
Zhou, Minqiang [2 ,3 ,4 ]
Wang, Wei [1 ]
Ning, Zijun [1 ]
Zhang, Feng [6 ]
Wang, Pucai [2 ,3 ,4 ]
机构
[1] Jiaxing Univ, Coll Data Sci, Jiaxing 314000, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Phys, LAGEO, Beijing 100029, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, CNRC, Beijing 100029, Peoples R China
[4] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Atmospher Environm & Extreme Meteorol, Beijing 100029, Peoples R China
[5] Shanghai Ecol Forecasting & Remote Sensing Ctr, Shanghai 200030, Peoples R China
[6] Fudan Univ, Inst Atmospher Sci, Dept Atmospher & Ocean Sci, Shanghai 200082, Peoples R China
来源
ADVANCES IN ATMOSPHERIC SCIENCES | 2024年
基金
中国国家自然科学基金;
关键词
OCO-3; power plant; CO2; emission; Gaussian Plume Model; ORBITING CARBON OBSERVATORY-2; ANTHROPOGENIC CO2; DIOXIDE; PERFORMANCE; RETRIEVALS; METHANE; SPACE;
D O I
10.1007/s00376-024-3293-9
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO2 emissions from point sources based on Orbiting Carbon Observatory-2 and -3 (OCO-2 and OCO-3) satellite measurements, but the factors affecting CO2 flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO2 emissions from three power plants in China based on OCO-3 XCO2 measurements. Moreover, flux uncertainties resulting from wind information, background values, satellite CO2 measurements, and atmospheric stability are discussed. This study highlights the CO2 flux uncertainty derived from the satellite measurements. Finally, satellite-based CO2 emission estimates are compared to bottom-up inventories. The satellite-based CO2 emission estimates at the Tuoketuo and Nongliushi power plants are similar to 30 and similar to 10 kt d(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) respectively, but similar to 10 kt d(-1) larger than the ODIAC at Baotou.
引用
收藏
页码:2276 / 2288
页数:13
相关论文
共 50 条
  • [41] Method for Calculating CO2 Emissions from the Power Sector at the Provincial Level in China
    Ma Cui-Mei
    Ge Quan-Sheng
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2014, 5 (02) : 92 - 99
  • [42] An Assessment of Anthropogenic CO2 Emissions by Satellite-Based Observations in China
    Yang, Shaoyuan
    Lei, Liping
    Zeng, Zhaocheng
    He, Zhonghua
    Zhong, Hui
    SENSORS, 2019, 19 (05)
  • [43] Mapping urban CO2 emissions using DMSP/OLS 'city lights' satellite data in China
    Wang, Yan
    Li, Guangdong
    ENVIRONMENT AND PLANNING A-ECONOMY AND SPACE, 2017, 49 (02): : 248 - 251
  • [44] Ionic liquid-based CO2 capture in power plants for low carbon emissions
    Ma, Yixin
    Gao, Jun
    Wang, Yinglong
    Hu, Jiajing
    Cui, Peizhe
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 75 : 134 - 139
  • [45] Opportunities to reduce energy consumption and CO2 emissions from ironmaking blast furnace using CO2 electrolysis to CO for carbon recycling
    Hu, Yichao
    Rufford, Thomas E.
    Chen, Jian
    Hao, Liangyuan
    Li, Mengran
    Qiu, Yinxuan
    Garg, Sahil
    Rudolph, Victor
    Wang, Geoff
    JOURNAL OF CLEANER PRODUCTION, 2023, 389
  • [46] CO2 emissions from China's power sector at the provincial level: Consumption versus production perspectives
    Lindner, Soeren
    Liu, Zhu
    Guan, Dabo
    Geng, Yong
    Li, Xin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 19 : 164 - 172
  • [47] Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China
    Chen, Bin
    Jin, Yingmei
    ENERGY ECONOMICS, 2020, 87
  • [48] Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements
    Wu, Lianghai
    Hasekamp, Otto
    Hu, Haili
    Landgraf, Jochen
    Butz, Andre
    aan de Brugh, Joost
    Aben, Ilse
    Pollard, Dave F.
    Griffith, David W. T.
    Feist, Dietrich G.
    Koshelev, Dmitry
    Hase, Frank
    Toon, Geoffrey C.
    Ohyama, Hirofumi
    Morino, Isamu
    Notholt, Justus
    Shiomi, Kei
    Iraci, Laura
    Schneider, Matthias
    de Maziere, Martine
    Sussmann, Ralf
    Kivi, Rigel
    Warneke, Thorsten
    Goo, Tae-Young
    Te, Yao
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (05) : 3111 - 3130
  • [49] MACHINE LEARNING BASED ESTIMATION OF COLUMN AVERAGED CO2 FROM OCO-2 SATELLITE DATA
    Das, Kamal
    Guruprasad, Ranjini
    Padmanaban, Manikandan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1444 - 1447
  • [50] Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity
    Kiel, Matthaus
    Eldering, Annmarie
    Roten, Dustin D.
    Lin, John C.
    Feng, Sha
    Lei, Ruixue
    Lauvaux, Thomas
    Oda, Tomohiro
    Roehl, Coleen M.
    Blavier, Jean-Francois
    Iraci, Laura T.
    REMOTE SENSING OF ENVIRONMENT, 2021, 258