Verifiable quantum homomorphic encryption based on garbled evaluation

被引:3
作者
He, Renke [1 ]
Chen, Lingli [1 ]
Li, Qin [1 ]
Tan, Xiaoqing [2 ]
Chen, Lv [1 ]
机构
[1] Xiangtan Univ, Sch Comp Sci, Xiangtan 411105, Peoples R China
[2] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum homomorphic encryption; quantum computation; privacy protection; verifiability; quantum cryptography; SCHEME;
D O I
10.1088/2058-9565/ad7a9c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum homomorphic encryption (QHE) can allow directly computation on the encrypted data without need to decrypt it in advance. It is also necessary to provide another property of verifiability that the client should verify whether the evaluation result is correct. However, most existing QHE schemes did not consider it and only assumed servers to be honest. In this paper, we propose a verifiable QHE (vQHE) scheme by using different types of circuits indistinguishable to the server, where the client can detect whether the server is honest or not by verifying the results of test circuits. Furthermore, by designing the gadgets to implement and test T gates and H gates in a non-interactive way for the used circuits, the proposed vQHE scheme does not require interaction during the process of evaluation. Thus the proposed vQHE scheme has the potential to make clients prefer to use it for protecting their private data in future quantum cloud environments.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
Ajtai M., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P99, DOI 10.1145/237814.237838
[2]   Quantum Fully Homomorphic Encryption with Verification [J].
Alagic, Gorjan ;
Dulek, Yfke ;
Schaffner, Christian ;
Speelman, Florian .
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2017, PT I, 2017, 10624 :438-467
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[5]   Efficient Fully Homomorphic Encryption from (Standard) LWE [J].
Brakerski, Zvika ;
Vaikuntanathan, Vinod .
2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, :97-106
[6]   How to Verify a Quantum Computation [J].
Broadbent, Anne .
THEORY OF COMPUTING, 2018, 14
[7]   Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity [J].
Broadbent, Anne ;
Jeffery, Stacey .
ADVANCES IN CRYPTOLOGY, PT II, 2015, 9216 :609-629
[8]  
Broadbent A, 2013, LECT NOTES COMPUT SC, V8043, P344, DOI 10.1007/978-3-642-40084-1_20
[9]  
Buhrman H., 2013, P 4 C INN THEOR COMP
[10]   Practical multi-party quantum homomorphic encryption [J].
Chen, Lv ;
Chen, Lingli ;
Li, Qin .
THEORETICAL COMPUTER SCIENCE, 2023, 971