A survey on fault diagnosis of rotating machinery based on machine learning

被引:6
|
作者
Wang, Qi [1 ,2 ]
Huang, Rui [1 ,2 ]
Xiong, Jianbin [1 ,2 ]
Yang, Jianxiang [1 ,2 ]
Dong, Xiangjun [1 ,2 ]
Wu, Yipeng [1 ,2 ]
Wu, Yinbo [1 ,2 ]
Lu, Tiantian [1 ,2 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Automat, Guangzhou 510665, Peoples R China
[2] Guangzhou Intelligent Bldg Equipment Informat Inte, Guangzhou 510665, Peoples R China
关键词
rotating machinery; fault diagnosis; extreme learning machines; support vector machines; deep belief networks; convolutional neural networks; CONVOLUTIONAL NEURAL-NETWORK; ARTIFICIAL-INTELLIGENCE; PLANETARY GEARBOXES; COMPUTER VISION; ALGORITHM; MODEL; SVM; CHALLENGES; TRANSFORM;
D O I
10.1088/1361-6501/ad6203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the booming development of modern industrial technology, rotating machinery fault diagnosis is of great significance to improve the safety, efficiency and sustainable development of industrial production. Machine learning as an effective solution for fault identification, has advantages over traditional fault diagnosis solutions in processing complex data, achieving automation and intelligence, adapting to different fault types, and continuously optimizing. It has high application value and broad development prospects in the field of fault diagnosis of rotating machinery. Therefore, this article reviews machine learning and its applications in intelligent fault diagnosis technology and covers advanced topics in emerging deep learning techniques and optimization methods. Firstly, this article briefly introduces the theories of several main machine learning methods, including Extreme Learning Machines (ELM), Support Vector Machines (SVM), Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs) and related emerging deep learning technologies such as Transformer, adversarial neural network (GAN) and graph neural network (GNN) in recent years. The optimization techniques for diagnosing faults in rotating machinery are subsequently investigated. Then, a brief introduction is given to the papers on the application of these machine learning methods in the field of rotating machinery fault diagnosis, and the application characteristics of various methods are summarized. Finally, this survey discusses the problems to be solved by machine learning in fault diagnosis of rotating machinery and proposes an outlook.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] A Time Series Transformer based method for the rotating machinery fault diagnosis q
    Jin, Yuhong
    Hou, Lei
    Chen, Yushu
    NEUROCOMPUTING, 2022, 494 : 379 - 395
  • [12] Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery
    Tang, Shengnan
    Ma, Jingtao
    Yan, Zhengqi
    Zhu, Yong
    Khoo, Boo Cheong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [13] Knowledge Modeling of Fault Diagnosis for Rotating Machinery Based on Ontology
    Chen, Rong
    Zhou, Zude
    Liu, Quan
    Duc Truong Pham
    Zhao, Yuanyuan
    Yan, Junwei
    Wei, Qin
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2015, : 1050 - 1055
  • [14] Application of Rotating Machinery Fault Diagnosis Based on Deep Learning
    Cui, Wei
    Meng, Guoying
    Wang, Aiming
    Zhang, Xinge
    Ding, Jun
    SHOCK AND VIBRATION, 2021, 2021
  • [15] A novel fault diagnosis algorithm for rotating machinery based on a sparsity and neighborhood preserving deep extreme learning machine
    Li, Ke
    Xiong, Meng
    Li, Fucai
    Su, Lei
    Wu, Jingjing
    NEUROCOMPUTING, 2019, 350 : 261 - 270
  • [16] A Migration Learning Method Based on Adaptive Batch Normalization Improved Rotating Machinery Fault Diagnosis
    Li, Xueyi
    Yu, Tianyu
    Li, Daiyou
    Wang, Xiangkai
    Shi, Cheng
    Xie, Zhijie
    Kong, Xiangwei
    SUSTAINABILITY, 2023, 15 (10)
  • [17] A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images
    Jia, Zhen
    Liu, Zhenbao
    Vong, Chi-Man
    Pecht, Michael
    IEEE ACCESS, 2019, 7 : 12348 - 12359
  • [18] A Physics-based Deep Learning Approach for Fault Diagnosis of Rotating Machinery
    Sadoughi, Mohammadkazem
    Hu, Chao
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 5919 - 5923
  • [19] Fault Diagnosis Methods Based on Machine Learning and its Applications for Wind Turbines: A Review
    Sun, Tongda
    Yu, Gang
    Gao, Mang
    Zhao, Lulu
    Bai, Chen
    Yang, Wanqian
    IEEE ACCESS, 2021, 9 : 147481 - 147511
  • [20] RESEARCH ON FAULT DIAGNOSIS SYSTEM OF ROTATING MACHINERY BASED ON MACHINERY CONFIGURATION
    Chen Ping
    Xie Zhijiang
    JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2008, 7 (01) : 41 - 44