Non-invertible symmetries and higher representation theory II
被引:15
作者:
Bartsch, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, EnglandUniv Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, England
Bartsch, Thomas
[1
]
Bullimore, Mathew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, EnglandUniv Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, England
Bullimore, Mathew
[1
]
Ferrari, Andrea E. V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, EnglandUniv Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, England
Ferrari, Andrea E. V.
[1
]
Pearson, Jamie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, EnglandUniv Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, England
Pearson, Jamie
[1
]
机构:
[1] Univ Durham, Dept Math Sci, Upper Mountjoy Campus, Durham DH1 3LE, England
来源:
SCIPOST PHYSICS
|
2024年
/
17卷
/
02期
基金:
英国工程与自然科学研究理事会;
关键词:
D O I:
10.21468/SciPostPhys.17.2.067
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
In this paper we continue our investigation of the global categorical symmetries that arise when gauging finite higher groups and their higher subgroups with discrete torsion. The motivation is to provide a common perspective on the construction of non-invertible global symmetries in higher dimensions and a precise description of the associated symmetry categories. We propose that the symmetry categories obtained by gauging higher subgroups may be defined as higher group-theoretical fusion categories, which are built from the projective higher representations of higher groups. As concrete applications we provide a unified description of the symmetry categories of gauge theories in three and four dimensions based on the Lie algebra so(N), N ), and a fully categorical description of non-invertible symmetries obtained by gauging a 1-form symmetry with a mixed 't Hooft anomaly. We also discuss the effect of discrete torsion on symmetry categories, based a series of obstructions determined by spectral sequence arguments.