Dynamics of a Two-Dimensional Slow-Fast Belousov-Zhabotinsky Model

被引:0
|
作者
Xu, Ruihan [1 ]
Sun, Ming [1 ]
Zhang, Xiang [2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, CMA Shanghai, Shanghai 200240, Peoples R China
关键词
Belousov-Zhabotinsky differential systems; Slow-fast systems; Global stability; Relaxation oscillation; Canard explosion; SINGULAR PERTURBATION-THEORY; CANARD; OSCILLATIONS;
D O I
10.1007/s12346-024-01139-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the reduced two-dimensional Belousov-Zhabotinsky slow-fast differential system, the known results are the existence of one limit cycle and its stability for particular values of the parameters. Here, we characterize all dynamics of this system except one degenerate case. The results include global stability of the positive equilibrium, supercritical and subcritical Hopf bifurcations, the existence of a canard explosion and relaxation oscillation, and the coexistence of one nest of two limit cycles with the outer one originating from the supercritical Hopf bifurcation at one canard point and the inner one from the subcritical Hopf bifurcation at another canard point. This last one is a new dynamical phenomenon.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Cusp Bursting and Slow-Fast Analysis with Two Slow Parameters in Photosensitive Belousov-Zhabotinsky Reaction
    Li Xiang-Hong
    Bi Qin-Sheng
    CHINESE PHYSICS LETTERS, 2013, 30 (07)
  • [2] Fractal dimensions and two-dimensional slow-fast systems
    Huzak, Renato
    Crnkovic, Vlatko
    Vlah, Domagoj
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
  • [3] Bifurcation Analysis of a Belousov-Zhabotinsky Reaction Model
    Wang, Xiaoli
    Chang, Yu
    Xu, Dashun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [4] KCC Theory of the Oregonator Model for Belousov-Zhabotinsky Reaction
    Gupta, M. K.
    Sahu, Abha
    Yadav, C. K.
    Goswami, Anjali
    Swarup, Chetan
    AXIOMS, 2023, 12 (12)
  • [5] Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction
    Pullela, Srinivasa R.
    Cristancho, Diego
    He, Peng
    Luo, Dawei
    Hall, Kenneth R.
    Cheng, Zhengdong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (21) : 4236 - 4243
  • [6] Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction
    Rossi, Federico
    Budroni, Marcello Antonio
    Marchettini, Nadia
    Cutietta, Luisa
    Rustici, Mauro
    Liveri, Maria Liria Turco
    CHEMICAL PHYSICS LETTERS, 2009, 480 (4-6) : 322 - 326
  • [7] Shear-induced dynamics of an active Belousov-Zhabotinsky droplet
    Shenoy, Shreyas A.
    Chaithanya, K. V. S.
    Dayal, Pratyush
    SOFT MATTER, 2025, 21 (10) : 1957 - 1969
  • [8] Dynamics of a Three-Coupled System in the Belousov-Zhabotinsky Reaction
    Yoshimoto, Minoru
    Kurosawa, Shigeru
    CHINESE JOURNAL OF PHYSICS, 2014, 52 (06) : 1748 - 1759
  • [9] Computing two-dimensional global invariant manifolds in slow-fast systems
    England, J. P.
    Krauskopf, B.
    Osinga, H. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (03): : 805 - 822
  • [10] Quint points lattice in a driven Belousov-Zhabotinsky reaction model
    Field, Richard J.
    Freire, Joana G.
    Gallas, Jason A. C.
    CHAOS, 2021, 31 (05)