Effect of surface roughness on methane adsorption in shale organic nanopores from the perspective of molecular simulations

被引:8
|
作者
Zhan, Shiyuan [1 ,2 ,3 ]
Bao, Junyao [1 ,2 ,3 ]
Ning, Shaofeng [1 ,2 ,3 ]
Zhang, Mingshan [4 ]
Wu, Jing [1 ,2 ,3 ]
Wang, Xiaoguang [1 ,2 ,3 ]
Li, Yonghui [5 ]
机构
[1] Chengdu Univ Technol, Coll Energy, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610059, Peoples R China
[3] Tianfu Yongxing Lab, Chengdu 610213, Peoples R China
[4] Yanshan Univ, Sch Vehicle & Energy, Qinhuangdao 066000, Peoples R China
[5] Natl Supercomp Ctr Chengdu, Chengdu 610213, Peoples R China
基金
美国国家科学基金会;
关键词
Methane adsorption; Shale organic nanopores; Surface roughness; Molecular simulations; GAS-ADSORPTION; CH4; ADSORPTION; CARBON-DIOXIDE; DYNAMICS SIMULATIONS; CO2; SLIT NANOPORES; PORE STRUCTURE; OIL-RECOVERY; KEROGEN; MODEL;
D O I
10.1016/j.cej.2024.155322
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding the shale gas adsorption behavior within organic nanopores is crucial for its development. The pore surfaces commonly exhibit random inherent roughness, which can significantly impact gas adsorption, while it's still in debate about whether the roughness could enhance the gas adsorption or not. To clarify the underlying mechanisms of the effect of surface roughness, in this study, the Grand Canonical Monte Carlo and Molecular Dynamic simulations are used to investigate the methane adsorption in wrinkled graphene nanochannels with various roughness. The heterogeneity of the adsorption layer along the rough topology is described in detail. The adsorption is enhanced near the concave region and weakened near the convex region. Additionally, increased surface roughness shifts the gas molecules' aggregation modes in the concave region from a gradual gradient to oscillatory "adsorption points". We observe that wall roughness due to the wrinkle can enhance the adsorption amount overall, attributed to the increased surface area and the increased unit adsorption capacity due to potential energy overlap. However, the contributions of both factors differ under various pressure and roughness conditions. Then a new mathematical method to estimate the gas adsorption amounts is provided and aligns well with molecular simulation results for a wide range of pressure and roughness conditions. And a potential answer the current debate about the positive or negative impact of adsorption due to roughness is promoted. The key may lie in the dominant role of the co-existed roughness caused by the fragment basal or edge surface. Our work could shed light on the underlying effect of surface roughness on the gas adsorption in shale, and have significant implications for the reserve estimation of shale gas formations.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Molecular Simulation of Carbon Dioxide and Methane Adsorption in Shale Organic Nanopores
    Zeng, Kecheng
    Jiang, Peixue
    Lun, Zengmin
    Xu, Ruina
    ENERGY & FUELS, 2019, 33 (03) : 1785 - 1796
  • [2] Methane Adsorption and Self-Diffusion in Shale Kerogen and Slit Nanopores by Molecular Simulations
    Tesson, Stephane
    Firoozabadi, Abbas
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (41): : 23528 - 23542
  • [3] Adsorption of methane in organic-rich shale nanopores: An experimental and molecular simulation study
    Xiong, Jian
    Liu, Xiangjun
    Liang, Lixi
    Zeng, Qun
    FUEL, 2017, 200 : 299 - 315
  • [4] The effect of water vapor on methane adsorption in the nanopores of shale
    Zhang, Zhaodi
    Yu, Qingchun
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 101
  • [5] Molecular Simulation of Methane Adsorption in Deep Shale Nanopores: Effect of Rock Constituents and Water
    Wu, Jianfa
    Yang, Xuefeng
    Huang, Shan
    Zhao, Shengxian
    Zhang, Deliang
    Zhang, Jian
    Ren, Chunyu
    Zhang, Chenglin
    Jiang, Rui
    Liu, Dongchen
    Yang, Qin
    Huang, Liang
    MINERALS, 2023, 13 (06)
  • [6] Molecular dynamics simulations about isotope fractionation of methane in shale nanopores
    Zhang, Wenjun
    Shen, Baojian
    Chen, Yilin
    Wang, Tengxi
    Chen, Wei
    FUEL, 2020, 278
  • [7] Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations
    Jin, Zhehui
    Firoozabadi, Abbas
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (10):
  • [8] Methane adsorption of nanocomposite shale in the presence of water: Insights from molecular simulations
    Babaei, Saeed
    Ghasemzadeh, Hasan
    Tesson, Stephane
    CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [9] Molecular simulation of methane adsorption characteristics in illite nanopores of deep shale reservoirs
    Huang L.
    Chen Q.
    Wu J.
    Yang Q.
    Zhang J.
    Huang S.
    Zhou W.
    Zou J.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2022, 53 (09): : 3522 - 3531
  • [10] Molecular simulations of the adsorption of shale gas in organic pores
    Wang, Z. H.
    Hu, S. D.
    Guo, P.
    Meng, W. J.
    Ou, Z. P.
    Xiao, C.
    Qiu, S. F.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : 106 - 111