STABILIZATION OF UNCERTAIN LINEAR DYNAMICS: AN OFFLINE-ONLINE STRATEGY

被引:0
|
作者
Guth, Philipp a. [1 ]
Kunisch, Karl [1 ,2 ]
Rodrigues, Sergio s. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
[2] Sci Comp Karl Franzens Univ Graz, Inst Math, Heinrichstr 36, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Model parameter uncertainty; feedback adaptive control; stabilization; Riccati feedback; parabolic equations; CONTROLLABILITY; STABILITY; EQUATIONS; SYSTEMS;
D O I
10.3934/mcrf.2024032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A strategy is proposed for adaptive stabilization of linear systems, depending on an uncertain parameter. Offline, the Riccati stabilizing feedback input control operators, corresponding to parameters in a finite training set of chosen candidates for the uncertain parameter, are solved and stored in a library. A uniform partition of the infinite time interval is chosen. In each of these subintervals, the input is given by one of the stored parameter dependent Riccati feedback operators. This parameter is updated online, at the end of each subinterval, based on input and output data, where the true data, corresponding to the true parameter, is compared to fictitious data that one would obtain in case the parameter was in a selected subset of the training set. The auxiliary data can be computed in parallel, so that the parameter update can be performed in real time. The focus is put on the case that the unknown parameter is constant and that the free dynamics is time-periodic. The stabilizing performance of the input obtained by the proposed strategy is illustrated by numerical simulations, for both constant and switching parameters.
引用
收藏
页码:640 / 669
页数:30
相关论文
共 50 条
  • [21] Stabilization for linear uncertain systems with switched time-varying delays
    Chen, Xinwei
    Du, Sheng-Li
    Wang, Li-Dong
    Liu, Li-Juan
    NEUROCOMPUTING, 2016, 191 : 296 - 303
  • [22] Stabilization of Non-Linear Fractional-Order Uncertain Systems
    Ji, Yude
    Du, Mingxing
    Guo, Yanping
    ASIAN JOURNAL OF CONTROL, 2018, 20 (02) : 669 - 677
  • [23] Stabilization of Uncertain Discrete-Time Linear System With Limited Communication
    Tripathy, Niladri Sekhar
    Kar, I. N.
    Paul, Kolin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (09) : 4727 - 4733
  • [24] Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems
    Krokavec, Dusan
    Filasova, Anna
    SYMMETRY-BASEL, 2021, 13 (09):
  • [25] Robust and Optimal Stabilization of Uncertain Linear Systems Using LQR Methods
    Zaffar, Salman
    Memon, Attaullah Y.
    2014 UKACC INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2014, : 163 - 167
  • [26] Strong practical stability and stabilization of uncertain discrete linear repetitive processes
    Dabkowski, Pawel
    Galkowski, Krzysztof
    Bachelier, Olivier
    Rogers, Eric
    Kummert, Anton
    Lam, James
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) : 220 - 233
  • [27] An Output-Feedback Design Approach for Robust Stabilization of Linear Systems With Uncertain Time-Delayed Dynamics in Sensors and Actuators
    Sereni, Bruno
    Galvao, Roberto Kawakami Harrop
    Assuncao, Edvaldo
    Teixeira, Marcelo Carvalho Minhoto
    IEEE ACCESS, 2023, 11 : 20769 - 20785
  • [28] Online Data-driven Stabilization of Switched Linear Systems
    Rotulo, Monica
    De Persis, Claudio
    Tesi, Pietro
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 300 - 305
  • [29] Stabilization strategy for unstable first order linear systems with large time-delay
    Marquez-Rubio, J. F.
    del Muro-Cuellar, B.
    Velasco-Villa, M.
    Alvarez-Ramirez, J.
    ASIAN JOURNAL OF CONTROL, 2012, 14 (05) : 1171 - 1179
  • [30] Robust Stabilization of Uncertain Non-homogeneous Markov Jump Linear Systems
    Faraji-Niri, M.
    Jahed-Modagh, M. R.
    Barkhordari-Yazdi, M.
    2013 3RD INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2013, : 42 - 46