Proper orthogonal decomposition reduced-order model of the global oceans

被引:2
|
作者
Kitsios, Vassili [1 ,2 ]
Cordier, Laurent [3 ]
O'Kane, Terence J. [4 ]
机构
[1] CSIRO, Environment, 107-121 Stn St, Aspendale, Vic 3195, Australia
[2] Monash Univ, Dept Mech & Aerosp Engn, Lab Turbulence Res Aerosp & Combust, Clayton, Vic 3800, Australia
[3] Univ Poitiers, ENSMA Inst Pprime, Dept Fluides Therm & Combust, ENSMA,CNRS, F-86360 Futuroscope, France
[4] CSIRO, Environment, Castray Esplanade, Battery Point, Tas 7004, Australia
关键词
Reduced-order modelling; Ocean; Climate; DYNAMICAL-SYSTEMS; PART I; REDUCTION;
D O I
10.1007/s00162-024-00719-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A reduced-order model (ROM) of the global oceans is developed by projecting the hydrostatic Boussinesq equations of motion onto a proper orthogonal decomposition (POD) basis. Three-dimensional POD modes are calculated from the ocean fields of an ensemble climate reanalysis dataset. The coefficients in the POD ROM are calculated using a regression approach. The performance of various POD ROM configurations are assessed. Each configuration is derived from an alternate sea-water equation of state, linking the density and temperature fields. POD ROM variants incorporating an equation of state in which density is a quadratic function of temperature, are able to reproduce the statistics of the large-scale structures at a fraction of the computational cost required to numerically simulate this flow. Due to the speed and efficiency of calculation, such reduced-order models of the global geophysical system will enable researchers and policy makers to assess the physical risk for a broader range of potential future climate scenarios.
引用
收藏
页码:707 / 727
页数:21
相关论文
共 50 条
  • [21] A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition
    Chang, Gary Han
    Schirmer, Clemens M.
    Modarres-Sadeghi, Yahya
    JOURNAL OF BIOMECHANICS, 2017, 54 : 33 - 43
  • [22] A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation
    San, Omer
    Iliescu, Traian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (05) : 1289 - 1319
  • [23] A Nonintrusive Parametrized Reduced-Order Model for Periodic Flows Based on Extended Proper Orthogonal Decomposition
    Li, Teng
    Deng, Shiyuan
    Zhang, Kun
    Wei, Haibo
    Wang, Runlong
    Fan, Jun
    Xin, Jianqiang
    Yao, Jianyao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (09)
  • [24] Reduced-order spectral data modeling based on local proper orthogonal decomposition
    Cho, Woon
    Sahyoun, Samir
    Djouadi, Seddik M.
    Koschan, Andreas
    Abidi, Mongi A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (05) : 733 - 740
  • [25] A reduced-order approach for optimal control of fluids using proper orthogonal decomposition
    Ravindran, SS
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 34 (05) : 425 - 448
  • [26] Bayesian proper orthogonal decomposition for learnable reduced-order models with uncertainty quantification
    Boluki S.
    Dadaneh S.Z.
    Dougherty E.R.
    Qian X.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1162 - 1173
  • [27] Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition
    Kunisch, K
    Volkwein, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (02) : 345 - 371
  • [28] Proper Orthogonal Decomposition for Reduced-Order Thermal Solution in Hypersonic Aerothermoelastic Simulations
    Falkiewicz, Nathan J.
    Cesnik, Carlos E. S.
    AIAA JOURNAL, 2011, 49 (05) : 994 - 1009
  • [29] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    Jorn F. M. van Doren
    Renato Markovinović
    Jan-Dirk Jansen
    Computational Geosciences, 2006, 10 : 137 - 158
  • [30] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    van Doren, Jorn F. M.
    Markovinovic, Renato
    Jansen, Jan-Dirk
    COMPUTATIONAL GEOSCIENCES, 2006, 10 (01) : 137 - 158