Proper orthogonal decomposition reduced-order model of the global oceans

被引:2
|
作者
Kitsios, Vassili [1 ,2 ]
Cordier, Laurent [3 ]
O'Kane, Terence J. [4 ]
机构
[1] CSIRO, Environment, 107-121 Stn St, Aspendale, Vic 3195, Australia
[2] Monash Univ, Dept Mech & Aerosp Engn, Lab Turbulence Res Aerosp & Combust, Clayton, Vic 3800, Australia
[3] Univ Poitiers, ENSMA Inst Pprime, Dept Fluides Therm & Combust, ENSMA,CNRS, F-86360 Futuroscope, France
[4] CSIRO, Environment, Castray Esplanade, Battery Point, Tas 7004, Australia
关键词
Reduced-order modelling; Ocean; Climate; DYNAMICAL-SYSTEMS; PART I; REDUCTION;
D O I
10.1007/s00162-024-00719-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A reduced-order model (ROM) of the global oceans is developed by projecting the hydrostatic Boussinesq equations of motion onto a proper orthogonal decomposition (POD) basis. Three-dimensional POD modes are calculated from the ocean fields of an ensemble climate reanalysis dataset. The coefficients in the POD ROM are calculated using a regression approach. The performance of various POD ROM configurations are assessed. Each configuration is derived from an alternate sea-water equation of state, linking the density and temperature fields. POD ROM variants incorporating an equation of state in which density is a quadratic function of temperature, are able to reproduce the statistics of the large-scale structures at a fraction of the computational cost required to numerically simulate this flow. Due to the speed and efficiency of calculation, such reduced-order models of the global geophysical system will enable researchers and policy makers to assess the physical risk for a broader range of potential future climate scenarios.
引用
收藏
页码:707 / 727
页数:21
相关论文
共 50 条
  • [1] Spectral Proper Orthogonal Decomposition Reduced-Order Model for Analysis of Aerothermoelasticity
    Ji, Chunxiu
    Xie, Dan
    Zhang, Shihao
    Maqsood, Adnan
    AIAA JOURNAL, 2023, 61 (02) : 793 - 807
  • [2] Proper Orthogonal Decomposition Reduced-Order Model for Nonlinear Aeroelastic Oscillations
    Xie, Dan
    Xu, Min
    Dowell, Earl H.
    AIAA JOURNAL, 2014, 52 (02) : 229 - 241
  • [3] An efficient proper orthogonal decomposition based reduced-order model for compressible flows
    Krath, Elizabeth H.
    Carpenter, Forrest L.
    Cizmas, Paul G. A.
    Johnston, David A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426 (426)
  • [4] Constrained reduced-order models based on proper orthogonal decomposition
    Reddy, Sohail R.
    Freno, Brian A.
    Cizmas, Paul G. A.
    Gokaltun, Seckin
    McDaniel, Dwayne
    Dulikravich, George S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 18 - 34
  • [5] Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition
    Lipponen, Antti
    Seppanen, Aku
    Kaipio, Jari
    JOURNAL OF ELECTRONIC IMAGING, 2013, 22 (02)
  • [6] A reduced-order model for heat transfer in multiphase flow and practical aspects of the proper orthogonal decomposition
    Brenner, Thomas A.
    Fontenot, Raymond L.
    Cizmas, Paul G. A.
    O'Brien, Thomas J.
    Breault, Ronald W.
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 : 68 - 80
  • [7] A Nonintrusive Parametrized Reduced-Order Model for Periodic Flows Based on Extended Proper Orthogonal Decomposition
    Li, Teng
    Deng, Shiyuan
    Zhang, Kun
    Wei, Haibo
    Wang, Runlong
    Fan, Jun
    Xin, Jianqiang
    Yao, Jianyao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (09)
  • [8] A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation
    San, Omer
    Iliescu, Traian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (05) : 1289 - 1319
  • [9] Proper Orthogonal Decomposition for Reduced-Order Thermal Solution in Hypersonic Aerothermoelastic Simulations
    Falkiewicz, Nathan J.
    Cesnik, Carlos E. S.
    AIAA JOURNAL, 2011, 49 (05) : 994 - 1009
  • [10] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    van Doren, Jorn F. M.
    Markovinovic, Renato
    Jansen, Jan-Dirk
    COMPUTATIONAL GEOSCIENCES, 2006, 10 (01) : 137 - 158