SPLITTING TECHNIQUE AND GODUNOV-TYPE SCHEMES FOR 2D SHALLOW WATER EQUATIONS WITH VARIABLE TOPOGRAPHY

被引:0
作者
Cuong, Dao Huy [1 ]
Thanh, Mai Duc [2 ]
机构
[1] Ho Chi Minh City Univ Educ, Dept Math, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
NOZZLE; MODEL; FLOW;
D O I
10.4134/BKMS.b230553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present numerical schemes to deal with nonconservative terms in the two-dimensional shallow water equations with variable topography. Relying on the dimensional splitting technique, we construct Godunov-type schemes. Such schemes can be categorized into two classes, namely the partly and fully splitting ones, depending on how deeply the scheme employs the splitting method. An upwind scheme technique is employed for the evolution of the velocity component for the partly splitting scheme. These schemes are shown to possess interesting properties: They can preserve the positivity of the water height, and they are wellbalanced.
引用
收藏
页码:969 / 998
页数:30
相关论文
共 16 条
[1]   A Godunov-type method for the seven-equation model of compressible two-phase flow [J].
Ambroso, A. ;
Chalons, C. ;
Raviart, P. -A. .
COMPUTERS & FLUIDS, 2012, 54 :67-91
[2]   RELAXATION AND NUMERICAL APPROXIMATION OF A TWO-FLUID TWO-PRESSURE DIPHASIC MODEL [J].
Ambroso, Annalisa ;
Chalons, Christophe ;
Coquel, Frederic ;
Galie, Thomas .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06) :1063-1097
[3]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[4]   A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline [J].
Baudin, M ;
Coquel, F ;
Tran, QH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (03) :914-936
[5]   Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws [J].
Botchorishvili, R ;
Pironneau, O .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (02) :391-427
[6]  
Botchorishvili R, 2003, MATH COMPUT, V72, P131, DOI 10.1090/S0025-5718-01-01371-0
[7]  
Chinnayya A., 2004, Int. J. Finite, V1
[8]   TWO PROPE RTIES OF TWO-VELOCITY TWO-PRESSURE MODELS FOR TWO-PHASE FLOWS [J].
Coquel, Frederic ;
Herard, Jean-Marc ;
Saleh, Khaled ;
Seguin, Nicolas .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (03) :593-600
[9]  
DalMaso G, 1995, J MATH PURE APPL, V74, P483
[10]   A well-balanced van Leer-type numerical scheme for shallow water equations with variable topography [J].
Dao Huy Cuong ;
Mai Duc Thanh .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (05) :1197-1225