Energy absorption characteristics of a novel six-missing rib honeycomb under in-plane impact

被引:1
|
作者
Cai, Zhenzhen [1 ]
Deng, Xiaolin [1 ]
机构
[1] Wuzhou Univ, Sch Elect & Informat Engn, Wuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
In-plane impact; ribbed honeycomb; negative Poisson's ratio; energy absorption;
D O I
10.1080/15376494.2024.2385699
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To enhance the performance of the six-missing rib honeycomb (ASRH), two axisymmetric missing rib honeycombs, ASRH-1 and ASRH-2, are proposed in this study. First, the in-plane impact performance of ASRH, ASRH-1, and ASRH-2 is experimentally compared to verify the accuracy of the finite element model. Then, the deformation patterns, specific energy absorption (SEA), and negative Poisson's ratio (NPR) effects of the three honeycombs under different parameters were parametrically investigated. The results indicate that ASRH-1 and ASRH-2 exhibit higher SEA than ASRH at an impact velocity of 10 m/s, but the NPR effect does not change significantly. The axisymmetric honeycomb demonstrates no advantage at 50 and 100 m/s high-speed impacts. The Poisson's ratio effect of the three honeycombs varied greatly with the internal ligament r of the honeycomb. The axisymmetric design offers a new concept for a NPR honeycomb design.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Study on the Energy Absorption Characteristics of Different Composite Honeycomb Sandwich Structures under Impact Energy
    Chang, Bianhong
    Wang, Zhenning
    Bi, Guangjian
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [22] Design and energy absorption characteristics of a novel honeycomb with embedded chiral structures
    Bian, Zheng
    Gong, Yu
    Sun, Zhixuan
    Zhao, Libin
    Zhang, Jianyu
    Hu, Ning
    COMPOSITE STRUCTURES, 2024, 333
  • [23] In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption
    Lu, Huan
    Wang, Xiaopeng
    Chen, Tianning
    THIN-WALLED STRUCTURES, 2021, 160
  • [24] In-plane characteristics of a multi-arc re-entrant auxetic honeycomb with enhanced negative Poisson's ratio effect and energy absorption
    Xu, Hao
    Liu, Hai-Tao
    Li, Guo-Feng
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2025, 109
  • [25] In-plane crushing response and energy absorption characteristics of metal honeycombs
    Zhang, X.-C., 1600, Journal of Functional Materials, P.O. Box 1512, Chongqing, 630700, China (44): : 2143 - 2147
  • [26] Ballistic resistance of a novel re-entrant auxetic honeycomb under in-plane high-velocity impact
    Guo, Junlan
    He, Qiang
    Li, Lizheng
    Zhu, Jiamei
    Yan, Dejun
    JOURNAL OF COMPOSITE MATERIALS, 2024, 58 (08) : 1031 - 1049
  • [27] Energy absorption characteristics and stability of novel bionic negative Poisson?s ratio honeycomb under oblique compression
    Liu, Jia-Yue
    Liu, Hai -Tao
    ENGINEERING STRUCTURES, 2022, 267
  • [28] A novel enhanced anti-tetra-missing rib auxetic structure with tailorable in-plane mechanical properties
    Zhu, Yilin
    Jiang, Songhui
    Lu, Fucong
    Ren, Xin
    ENGINEERING STRUCTURES, 2022, 262
  • [29] Tailored energy absorption for a novel auxetic honeycomb structure under large deformation
    Hou, Xiuhui
    Wang, Bin
    Deng, Zichen
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (05)
  • [30] Energy absorption characteristics of a lightweight auxetic honeycomb under low-velocity impact loading
    Wang, Wei-Jing
    Zhang, Wei-Ming
    Guo, Meng-Fu
    Yang, Jin-Shui
    Ma, Li
    THIN-WALLED STRUCTURES, 2023, 185