Automated Three-Dimensional Imaging and Pfirrmann Classification of Intervertebral Disc Using a Graphical Neural Network in Sagittal Magnetic Resonance Imaging of the Lumbar Spine

被引:1
作者
Baur, David [1 ]
Bieck, Richard [2 ]
Berger, Johann [2 ]
Schoefer, Patrick [2 ]
Stelzner, Tim [2 ]
Neumann, Juliane [2 ]
Neumuth, Thomas [2 ]
Heyde, Christoph-E. [1 ]
Voelker, Anna [1 ]
机构
[1] Univ Hosp Leipzig, Dept Orthoped Trauma & Plast Surg, Liebigstr 20, D-04103 Leipzig, Germany
[2] Univ Leipzig, Innovat Ctr Comp Assisted Surg ICCAS, Leipzig, Germany
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2025年 / 38卷 / 02期
关键词
Artificial intelligence; Convolutional neural network; Graph neural network; Machine learning; MRI; Spine imaging; Pfirrmann classification; Intervertebral disc degeneration; DEGENERATION; PREVALENCE; AGREEMENT;
D O I
10.1007/s10278-024-01251-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This study aimed to develop a graph neural network (GNN) for automated three-dimensional (3D) magnetic resonance imaging (MRI) visualization and Pfirrmann grading of intervertebral discs (IVDs), and benchmark it against manual classifications. Lumbar IVD MRI data from 300 patients were retrospectively analyzed. Two clinicians assessed the manual segmentation and grading for inter-rater reliability using Cohen's kappa. The IVDs were then processed and classified using an automated convolutional neural network (CNN)-GNN pipeline, and their performance was evaluated using F1 scores. Manual Pfirrmann grading exhibited moderate agreement (kappa = 0.455-0.565) among the clinicians, with higher exact match frequencies at lower lumbar levels. Single-grade discrepancies were prevalent except at L5/S1. Automated segmentation of IVDs using a pretrained U-Net model achieved an F1 score of 0.85, with a precision and recall of 0.83 and 0.88, respectively. Following 3D reconstruction of the automatically segmented IVD into a 3D point-cloud representation of the target intervertebral disc, the GNN model demonstrated moderate performance in Pfirrmann classification. The highest precision (0.81) and F1 score (0.71) were observed at L2/3, whereas the overall metrics indicated moderate performance (precision: 0.46, recall: 0.47, and F1 score: 0.46), with variability across spinal levels. The integration of CNN and GNN offers a new perspective for automating IVD analysis in MRI. Although the current performance highlights the need for further refinement, the moderate accuracy of the model, combined with its 3D visualization capabilities, establishes a promising foundation for more advanced grading systems.
引用
收藏
页码:979 / 987
页数:9
相关论文
共 31 条
[1]   Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future [J].
Ahmedt-Aristizabal, David ;
Armin, Mohammad Ali ;
Denman, Simon ;
Fookes, Clinton ;
Petersson, Lars .
SENSORS, 2021, 21 (14)
[2]   Lumbar Spine: Agreement in the Interpretation of 1.5-T MR Images by Using the Nordic Modic Consensus Group Classification Form [J].
Arana, Estanislao ;
Royuela, Ana ;
Kovacs, Francisco M. ;
Estremera, Ana ;
Sarasibar, Helena ;
Amengual, Guillermo ;
Galarraga, Isabel ;
Martinez, Carmen ;
Muriel, Alfonso ;
Abraira, Victor ;
Teresa Gil del Real, Maria ;
Zamora, Javier ;
Campillo, Carlos .
RADIOLOGY, 2010, 254 (03) :809-817
[3]   Analysis of the paraspinal muscle morphology of the lumbar spine using a convolutional neural network (CNN) [J].
Baur, David ;
Bieck, Richard ;
Berger, Johann ;
Neumann, Juliane ;
Henkelmann, Jeanette ;
Neumuth, Thomas ;
Heyde, Christoph-E ;
Voelker, Anna .
EUROPEAN SPINE JOURNAL, 2022, 31 (03) :774-782
[4]  
Belkin M, 2002, ADV NEUR IN, V14, P585
[5]  
Bevilacqua B, 2021, SIZE INVARIANT GRAPH
[6]   Lumbar Spine: Reliability of MR Imaging Findings [J].
Carrino, John A. ;
Lurie, Jon D. ;
Tosteson, Anna N. A. ;
Tosteson, Tor D. ;
Carragee, Eugene J. ;
Kaiser, Jay ;
Grove, Margaret R. ;
Blood, Emily ;
Pearson, Loretta H. ;
Weinstein, James N. ;
Herzog, Richard .
RADIOLOGY, 2009, 250 (01) :161-170
[7]   2D Segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images [J].
Castro-Mateos, Isaac ;
Pozo, Jose M. ;
Lazary, Aron ;
Frangi, Alejandro F. .
MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035
[8]   Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis [J].
Compte, Roger ;
Smith, Isabelle Granville ;
Isaac, Amanda ;
Danckert, Nathan ;
McSweeney, Terence ;
Liantis, Panagiotis ;
Williams, Frances M. K. .
EUROPEAN SPINE JOURNAL, 2023, 32 (11) :3764-3787
[9]  
FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619
[10]   Automated Grading of Lumbar Disc Degeneration Using a Push-Pull Regularization Network Based onMRI [J].
Gao, Fei ;
Liu, Shui ;
Zhang, Xiaodong ;
Wang, Xiaoying ;
Zhang, Jue .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (03) :799-806