Development and Validation of a Predictive Model for Intracranial Haemorrhage in Patients on Direct Oral Anticoagulants

被引:1
作者
Liu, Yuanyuan [1 ,2 ]
Li, Linjie [1 ]
Li, Jingge [1 ]
Liu, Hangkuan [1 ]
Geru, A. [1 ]
Wang, Yulong [1 ]
Li, Yongle [1 ]
Sia, Ching-Hui [3 ,4 ]
Lip, Gregory Y. H. [5 ,6 ,7 ]
Yang, Qing [1 ]
Zhou, Xin [1 ]
机构
[1] Tianjin Med Univ, Dept Cardiol, Gen Hosp, 154 Anshan Rd, Tianjin 300052, Peoples R China
[2] Qingzhou Peoples Hosp, Dept Cardiol, Weifang 262500, Shandong, Peoples R China
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, 1E,Ridge Rd, Singapore 119228, Singapore
[4] Natl Univ Heart Ctr, Dept Cardiol, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
[5] Univ Liverpool, Liverpool Ctr Cardiovasc Sci, Liverpool, England
[6] Liverpool Heart & Chest Hosp, Liverpool, England
[7] Aalborg Univ, Danish Ctr Hlth Serv Res, Dept Clin Med, Aalborg, Denmark
基金
中国国家自然科学基金;
关键词
intracranial haemorrhage; direct oral anticoagulant; predictive model; XGBoost; VITAMIN-K ANTAGONIST; INTRACEREBRAL HEMORRHAGE; ATRIAL-FIBRILLATION; RISK-FACTORS; SCORE; ASSOCIATION; WARFARIN;
D O I
10.1177/10760296241271338
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Intracranial haemorrhage (ICH) poses a significant threat to patients on Direct Oral Anticoagulants (DOACs), with existing risk scores inadequately predicting ICH risk in these patients. We aim to develop and validate a predictive model for ICH risk in DOAC-treated patients. Methods: 24,794 patients treated with a DOAC were identified in a province-wide electronic medical and health data platform in Tianjin, China. The cohort was randomly split into a 4:1 ratio for model development and validation. We utilized forward stepwise selection, Least Absolute Shrinkage and Selection Operator (LASSO), and eXtreme Gradient Boosting (XGBoost) to select predictors. Model performance was compared using the area under the curve (AUC) and net reclassification index (NRI). The optimal model was stratified and compared with the DOAC model. Results: The median age is 68.0 years, and 50.4% of participants are male. The XGBoost model, incorporating six independent factors (history of hemorrhagic stroke, peripheral artery disease, venous thromboembolism, hypertension, age, low-density lipoprotein cholesterol levels), demonstrated superior performance in the development dateset. It showed moderate discrimination (AUC: 0.68, 95% CI: 0.64-0.73), outperforming existing DOAC scores (Delta AUC = 0.063, P = 0.003; NRI = 0.374, P < 0.001). Risk categories significantly stratified ICH risk (low risk: 0.26%, moderate risk: 0.74%, high risk: 5.51%). Finally, the model demonstrated consistent predictive performance in the internal validation. Conclusion: In a real-world Chinese population using DOAC therapy, this study presents a reliable predictive model for ICH risk. The XGBoost model, integrating six key risk factors, offers a valuable tool for individualized risk assessment in the context of oral anticoagulation therapy.
引用
收藏
页数:11
相关论文
共 40 条
  • [21] Venous thromboembolism
    Khan, Faizan
    Tritschler, Tobias
    Kahn, Susan R.
    Rodger, Marc A.
    [J]. LANCET, 2021, 398 (10294) : 64 - 77
  • [22] The East Asian Paradox: An Updated Position Statement on the Challenges to the Current Antithrombotic Strategy in Patients with Cardiovascular Disease
    Kim, Hyun Kuk
    Tantry, Udaya S.
    Smith, Sidney C., Jr.
    Jeong, Myung Ho
    Park, Seung-Jung
    Kim, Moo Hyun
    Lim, Do-Sun
    Shin, Eun-Seok
    Park, Duk-Woo
    Huo, Yong
    Chen, Shao-Liang
    Bo, Zheng
    Goto, Shinya
    Kimura, Takeshi
    Yasuda, Satoshi
    Chen, Wen-Jone
    Chan, Mark
    Aradi, Daniel
    Geisler, Tobias
    Gorog, Diana A.
    Sibbing, Dirk
    Lip, Gregory Y. H.
    Angiolillo, Dominick J.
    Gurbel, Paul A.
    Jeong, Young-Hoon
    [J]. THROMBOSIS AND HAEMOSTASIS, 2021, 121 (04) : 422 - 432
  • [23] Lee W, 2021, SCI REP-UK, V11, DOI [10.1038/s41598-021-92362-1, 10.1038/s41598-021-85998-6]
  • [24] Improving Stroke Risk Prediction in the General Population: A Comparative Assessment of Common Clinical Rules, a New Multimorbid Index, and Machine-Learning-Based Algorithms
    Lip, Gregory Y. H.
    Genaidy, Ash
    Tran, George
    Marroquin, Patricia
    Estes, Cara
    Sloop, Sue
    [J]. THROMBOSIS AND HAEMOSTASIS, 2022, 122 (01) : 142 - 150
  • [25] Efficacy and safety of low levels of low-density lipoprotein cholesterol: trans-ancestry linear and non-linear Mendelian randomization analyses
    Liu, Hongwei
    Li, Jianxin
    Liu, Fangchao
    Huang, Keyong
    Cao, Jie
    Chen, Shufeng
    Li, Hongfan
    Shen, Chong
    Hu, Dongsheng
    Huang, Jianfeng
    Lu, Xiangfeng
    Gu, Dongfeng
    [J]. EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2023, 30 (12) : 1207 - 1215
  • [26] Machine Learning to Predict Outcomes in Patients with Acute Pulmonary Embolism Who Prematurely Discontinued Anticoagulant Therapy
    Mora, Damian
    Nieto, Jose A.
    Mateo, Jorge
    Bikdeli, Behnood
    Barco, Stefano
    Trujillo-Santos, Javier
    Soler, Silvia
    Font, Llorenc
    Bosevski, Marijan
    Monreal, Manuel
    [J]. THROMBOSIS AND HAEMOSTASIS, 2022, 122 (04) : 570 - 577
  • [27] Bleeding Risk Assessment in End-Stage Kidney Disease: Validation of Existing Risk Scores and Evaluation of a Machine Learning-Based Approach
    Nopp, Stephan
    Spielvogel, Clemens P.
    Schmaldienst, Sabine
    Klauser-Braun, Renate
    Lorenz, Matthias
    Bauer, Benedikt N.
    Pabinger, Ingrid
    Saeemann, Marcus
    Koenigsbrugge, Oliver
    Ay, Cihan
    [J]. THROMBOSIS AND HAEMOSTASIS, 2022, : 29 - 40
  • [28] The ORBIT bleeding score: a simple bedside score to assess bleeding risk in atrial fibrillation
    O'Brien, Emily C.
    Simon, DaJuanicia N.
    Thomas, Laine E.
    Hylek, Elaine M.
    Gersh, Bernard J.
    Ansell, Jack E.
    Kowey, Peter R.
    Mahaffey, Kenneth W.
    Chang, Paul
    Fonarow, Gregg C.
    Pencina, Michael J.
    Piccini, Jonathan P.
    Peterson, Eric D.
    [J]. EUROPEAN HEART JOURNAL, 2015, 36 (46) : 3258 - 3264
  • [29] American Society of Hematology 2020 guidelines for management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism
    Ortel, Thomas L.
    Neumann, Ignacio
    Ageno, Walter
    Beyth, Rebecca
    Clark, Nathan P.
    Cuker, Adam
    Hutten, Barbara A.
    Jaff, Michael R.
    Manja, Veena
    Schulman, Sam
    Thurston, Caitlin
    Vedantham, Suresh
    Verhamme, Peter
    Witt, Daniel M.
    Florez, Ivan D.
    Izcovich, Ariel
    Nieuwlaat, Robby
    Ross, Stephanie
    Schunemann, Holger J.
    Wiercioch, Wojtek
    Zhang, Yuan
    Zhang, Yuqing
    [J]. BLOOD ADVANCES, 2020, 4 (19) : 4693 - 4738
  • [30] Risk Factors for Intracerebral Hemorrhage in Patients With Atrial Fibrillation on Non-Vitamin K Antagonist Oral Anticoagulants for Stroke Prevention
    Paciaroni, Maurizio
    Agnelli, Giancarlo
    Giustozzi, Michela
    Caso, Valeria
    Toso, Elisabetta
    Angelini, Filippo
    Canavero, Isabella
    Micieli, Giuseppe
    Antonenko, Kateryna
    Rocco, Alessandro
    Diomedi, Marina
    Katsanos, Aristeidis H.
    Shoamanesh, Ashkan
    Giannopoulos, Sotirios
    Ageno, Walter
    Pegoraro, Samuela
    Putaala, Jukka
    Strbian, Daniel
    Sallinen, Hanne
    Mac Grory, Brian C.
    Furie, Karen L.
    Stretz, Christoph
    Reznik, Michael E.
    Alberti, Andrea
    Venti, Michele
    Mosconi, Maria Giulia
    Vedovati, Maria Cristina
    Franco, Laura
    Zepponi, Giorgia
    Romoli, Michele
    Zini, Andrea
    Brancaleoni, Laura
    Riva, Letizia
    Silvestrelli, Giorgio
    Ciccone, Alfonso
    Zedde, Maria Luisa
    Giorli, Elisa
    Kosmidou, Maria
    Ntais, Evangelos
    Palaiodimou, Lina
    Halvatsiotis, Panagiotis
    Tassinari, Tiziana
    Saia, Valentina
    Ornello, Raffaele
    Sacco, Simona
    Bandini, Fabio
    Mancuso, Michelangelo
    Orlandi, Giovanni
    Ferrari, Elena
    Pezzini, Alessandro
    [J]. STROKE, 2021, 52 (04) : 1450 - 1454