Progressive Learning With Cross-Window Consistency for Semi-Supervised Semantic Segmentation

被引:0
|
作者
Dang, Bo [1 ]
Li, Yansheng [1 ]
Zhang, Yongjun [1 ]
Ma, Jiayi [2 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Semantics; Data models; Pipelines; Visualization; Remote sensing; Medical diagnostic imaging; Semi-supervised semantic segmentation; consistency loss; pseudo-label supervision;
D O I
10.1109/TIP.2024.3458854
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised semantic segmentation focuses on the exploration of a small amount of labeled data and a large amount of unlabeled data, which is more in line with the demands of real-world image understanding applications. However, it is still hindered by the inability to fully and effectively leverage unlabeled images. In this paper, we reveal that cross-window consistency (CWC) is helpful in comprehensively extracting auxiliary supervision from unlabeled data. Additionally, we propose a novel CWC-driven progressive learning framework to optimize the deep network by mining weak-to-strong constraints from massive unlabeled data. More specifically, this paper presents a biased cross-window consistency (BCC) loss with an importance factor, which helps the deep network explicitly constrain confidence maps from overlapping regions in different windows to maintain semantic consistency with larger contexts. In addition, we propose a dynamic pseudo-label memory bank (DPM) to provide high-consistency and high-reliability pseudo-labels to further optimize the network. Extensive experiments on three representative datasets of urban views, medical scenarios, and satellite scenes with consistent performance gain demonstrate the superiority of our framework. Our code is released at https://jack-bo1220.github.io/project/CWC.html.
引用
收藏
页码:5219 / 5231
页数:13
相关论文
共 50 条
  • [41] Semi-supervised Deep Learning via Transformation Consistency Regularization for Remote Sensing Image Semantic Segmentation
    Zhang, Bin
    Zhang, Yongjun
    Li, Yansheng
    Wan, Yi
    Guo, Haoyu
    Zheng, Zhi
    Yang, Kun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5782 - 5796
  • [42] CROSS-LEVEL CONTRASTIVE LEARNING AND CONSISTENCY CONSTRAINT FOR SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Zhao, Xinkai
    Fang, Chaowei
    Fan, De-Jun
    Lin, Xutao
    Gao, Feng
    Li, Guanbin
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [43] Semi-Supervised Learning Matting Algorithm Based on Semantic Consistency of Trimaps
    Kong, Yating
    Li, Jide
    Hu, Liangpeng
    Li, Xiaoqiang
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [44] Multidimensional perturbed consistency learning for semi-supervised medical image segmentation
    Yuan, Enze
    Zhao, Bin
    Qin, Xiao
    Ding, Shuxue
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)
  • [45] Cut-Paste Consistency Learning for Semi-Supervised Lesion Segmentation
    Yap, Boon Peng
    Ng, Beng Koon
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 6149 - 6158
  • [46] CGSNet: Cross-consistency guiding semi-supervised semantic segmentation network for remote sensing of plateau lake
    Chen, Guangchen
    Shi, Benjie
    Zhang, Yinhui
    He, Zifen
    Zhang, Pengcheng
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 230
  • [47] Semantic Consistency Cross-Modal Retrieval With Semi-Supervised Graph Regularization
    Xu, Gongwen
    Li, Xiaomei
    Zhang, Zhijun
    IEEE ACCESS, 2020, 8 : 14278 - 14288
  • [48] LaserMix for Semi-Supervised LiDAR Semantic Segmentation
    Kong, Lingdong
    Ren, Jiawei
    Pan, Liang
    Liu, Ziwei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21705 - 21715
  • [49] Semi-Supervised Semantic Segmentation With Region Relevance
    Chen, Rui
    Chen, Tao
    Wang, Qiong
    Yao, Yazhou
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 852 - 857
  • [50] A semi-supervised approach for the semantic segmentation of trajectories
    Soares Junior, Amilcar
    Times, Valeria Cesario
    Renso, Chiara
    Matwin, Stan
    Cabral, Lucidio A. F.
    2018 19TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2018), 2018, : 145 - 154