On Ramanujan's modular equations and Hecke groups

被引:0
|
作者
Alam, Shafiul [1 ,2 ]
机构
[1] Univ Barishal, Dept Math, Barishal 8254, Bangladesh
[2] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai 9808579, Japan
来源
ANNALES FENNICI MATHEMATICI | 2024年 / 49卷 / 02期
关键词
Modular equation; hypergeometric function; Hecke group; congruence subgroup;
D O I
10.54330/afm.146802
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by the work of Ramanujan, many people have studied generalized modular equations and the numerous identities found by Ramanujan. These identities known as modular equations can be transformed into polynomial equations. There is no developed theory about how to find the degrees of these polynomial modular equations explicitly. In this paper, we determine the degrees of the polynomial modular equations explicitly and study the relation between Hecke groups and modular equations in Ramanujan's theories of signatures 2, 3, and 4.
引用
收藏
页码:461 / 471
页数:11
相关论文
共 50 条
  • [1] Ramanujan's modular equations of degree 5
    Baruah, Nayandeep Deka
    Bora, Jonali
    Ojah, Kanan Kumari
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (04): : 485 - 506
  • [2] Ramanujan’s modular equations of degree 5
    NAYANDEEP DEKA BARUAH
    JONALI BORA
    KANAN KUMARI OJAH
    Proceedings - Mathematical Sciences, 2012, 122 : 485 - 506
  • [3] Analytical approach to Ramanujan type and Ramanujan's modular equations of degree 7
    Mahadevaswamy
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (07) : 1413 - 1423
  • [4] REVISIT TO RAMANUJAN'S MODULAR EQUATIONS OF DEGREE 21
    Vasuki, K. R.
    Bhuvan, E. N.
    Anusha, T.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (04) : 1097 - 1105
  • [5] Revisit to Ramanujan’s modular equations of degree 21
    K. R. Vasuki
    E. N. Bhuvan
    T. Anusha
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 1097 - 1105
  • [6] Classical approach to Ramanujan’s modular equations of septic degree
    K. R. Vasuki
    The Ramanujan Journal, 2020, 51 : 553 - 561
  • [7] Classical approach to Ramanujan's modular equations of septic degree
    Vasuki, K. R.
    Mahadevaswamy
    RAMANUJAN JOURNAL, 2020, 51 (03) : 553 - 561
  • [8] Theta function identities associated with Ramanujan’s modular equations of degree 15
    Rupam Barman
    Nayandeep Deka Baruah
    Proceedings - Mathematical Sciences, 2010, 120 : 267 - 284
  • [9] A few theta-function identities and some of Ramanujan's modular equations
    Baruah, ND
    RAMANUJAN JOURNAL, 2000, 4 (03) : 239 - 250
  • [10] Theta function identities associated with Ramanujan's modular equations of degree 15
    Barman, Rupam
    Baruah, Nayandeep Deka
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (03): : 267 - 284