Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data

被引:1
|
作者
Han, Dou [1 ]
Zhang, Yongzhi [1 ]
Ruan, Haijun [2 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400030, Peoples R China
[2] Coventry Univ, Ctr Emobil & Clean Growth Res, Coventry CV1 5FB, England
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State of health; Machine learning; Feature engineering; Data augmentation; Limited labeled data; MODEL;
D O I
10.1016/j.est.2024.113744
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries, the most promising and widely used power source, require accurate age-related failure assessments for safe and efficient operation. As a critical battery age indicator, state of health (SOH) estimation is a pivotal function of battery management systems. This study proposes two machine learning (ML) methods with data augmentation (Method 1 and Method 2) for predicting batteries' SOH. In Method 1, data augmentation is performed using limited labeled data, and an ML model is employed to predict batteries' SOH throughout their life cycle. Method 2 comprises two ML models: the first ML model predicts early-life SOH online, while the second predicts mid-to-late-life SOH online utilizing augmented labeled data. To address the big data requirement problem of ML, a linear relationship between the equivalent circuit model features and battery SOH is found and used to generate much augmented training data from limited labeled data during batteries' early-life. The proposed method is validated using three types of batteries, comprising 118 cells with 45,948 data units. The results indicated an excellent improvement in predictive performance with an increase in limited labeled data. Specific application scenarios for the two methods are discussed. Additionally, if online early-life data are labeled, they can be used for data augmentation for further prediction accuracy improvement when using Method 2.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A model for state-of-health estimation of lithium ion batteries based on charging profiles
    Bian, Xiaolei
    Liu, Longcheng
    Yan, Jinying
    ENERGY, 2019, 177 : 57 - 65
  • [32] A novel data-model fusion state-of-health estimation approach for lithium-ion batteries
    Ma, Zeyu
    Yang, Ruixin
    Wang, Zhenpo
    APPLIED ENERGY, 2019, 237 : 836 - 847
  • [33] Time Series Feature extraction for Lithium-Ion batteries State-Of-Health prediction
    Jorge, Ines
    Mesbahi, Tedjani
    Samet, Ahmed
    Bone, Romuald
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [34] State-of-Health prediction of lithium-ion batteries based on a low dimensional Gaussian Process Regression
    Pohlmann, Sebastian
    Mashayekh, Ali
    Stroebl, Florian
    Karnehm, Dominic
    Kuder, Manuel
    Neve, Antje
    Weyh, Thomas
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [35] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671
  • [36] State-of-health estimation for the lithium-ion battery based on support vector regression
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    APPLIED ENERGY, 2018, 227 : 273 - 283
  • [37] State-of-health Estimation of Lithium-ion Batteries Based on EMD-DO-Elman and GRA
    Qian, Yucun
    Yang, Bo
    Zheng, Ruyi
    Liang, Boxiao
    Wu, Pengyu
    Dianwang Jishu/Power System Technology, 2024, 48 (09): : 3695 - 3704
  • [38] State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    IEEE ACCESS, 2019, 7 : 105186 - 105201
  • [39] Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries
    Bao, Xinyuan
    Chen, Liping
    Lopes, Antonio M.
    Li, Xin
    Xie, Siqiang
    Li, Penghua
    Chen, YangQuan
    ENERGY, 2023, 278
  • [40] State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions
    Ke, Xue
    Hong, Huawei
    Zheng, Peng
    Zhang, Shuling
    Zhu, Lingling
    Li, Zhicheng
    Cai, Jiaxin
    Fan, Peixiao
    Yang, Jun
    Wang, Jun
    Li, Li
    Kuai, Chunguang
    Guo, Yuzheng
    JOURNAL OF ENERGY STORAGE, 2024, 100