Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data

被引:1
|
作者
Han, Dou [1 ]
Zhang, Yongzhi [1 ]
Ruan, Haijun [2 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400030, Peoples R China
[2] Coventry Univ, Ctr Emobil & Clean Growth Res, Coventry CV1 5FB, England
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State of health; Machine learning; Feature engineering; Data augmentation; Limited labeled data; MODEL;
D O I
10.1016/j.est.2024.113744
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries, the most promising and widely used power source, require accurate age-related failure assessments for safe and efficient operation. As a critical battery age indicator, state of health (SOH) estimation is a pivotal function of battery management systems. This study proposes two machine learning (ML) methods with data augmentation (Method 1 and Method 2) for predicting batteries' SOH. In Method 1, data augmentation is performed using limited labeled data, and an ML model is employed to predict batteries' SOH throughout their life cycle. Method 2 comprises two ML models: the first ML model predicts early-life SOH online, while the second predicts mid-to-late-life SOH online utilizing augmented labeled data. To address the big data requirement problem of ML, a linear relationship between the equivalent circuit model features and battery SOH is found and used to generate much augmented training data from limited labeled data during batteries' early-life. The proposed method is validated using three types of batteries, comprising 118 cells with 45,948 data units. The results indicated an excellent improvement in predictive performance with an increase in limited labeled data. Specific application scenarios for the two methods are discussed. Additionally, if online early-life data are labeled, they can be used for data augmentation for further prediction accuracy improvement when using Method 2.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Yanshuo Liu
    Licheng Wang
    Dezhi Li
    Kai Wang
    Protection and Control of Modern Power Systems, 2023, 8
  • [22] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Liu, Yanshuo
    Wang, Licheng
    Li, Dezhi
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [23] A Comprehensive Review on Data-Driven Methods of Lithium-Ion Batteries State-of-Health Forecasting
    Pham, Thien
    Bui, Hung
    Nguyen, Mao
    Pham, Quang
    Vu, Vinh
    Le, Triet
    Quan, Tho
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2025, 15 (02)
  • [24] Online State-of-Health Estimation for NMC Lithium-Ion Batteries Using an Observer Structure
    Neunzling, Jan
    Winter, Hanno
    Henriques, David
    Fleckenstein, Matthias
    Markus, Torsten
    BATTERIES-BASEL, 2023, 9 (10):
  • [25] A Temporal Fusion Memory Network-Based Method for State-of-Health Estimation of Lithium-Ion Batteries
    Chen, Kang
    Wang, Dandan
    Guo, Wenwen
    BATTERIES-BASEL, 2024, 10 (08):
  • [26] State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion
    Xu, Jinli
    Liu, Baolei
    Zhang, Guangya
    Zhu, Jiwei
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 383 - 397
  • [27] State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis
    Li, Yuanyuan
    Sheng, Hanmin
    Cheng, Yuhua
    Stroe, Daniel-Ioan
    Teodorescu, Remus
    APPLIED ENERGY, 2020, 277
  • [28] State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach
    Yun, Zhonghua
    Qin, Wenhu
    Shi, Weipeng
    Ping, Peng
    ENERGIES, 2020, 13 (18)
  • [29] State-of-health estimation for lithium-ion batteries using differential thermal voltammetry and Gaussian process regression
    Wang, Ping
    Peng, Xiangyuan
    Ze, Cheng
    JOURNAL OF POWER ELECTRONICS, 2022, 22 (07) : 1165 - 1175
  • [30] Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance
    Tan, Xiaojun
    Tan, Yuqing
    Zhan, Di
    Yu, Ze
    Fan, Yuqian
    Qiu, Jianzhi
    Li, Jun
    IEEE ACCESS, 2020, 8 : 56811 - 56822