Cross-Linked Composite Solid Polymer Electrolyte Doped with Li6.4La3Zr1.4Ta0.6O12 for High Voltage Lithium Metal Batteries

被引:0
|
作者
Meda, Lamartine [1 ]
Masafwa, Kutemwa [1 ]
Crockem, Ayssia N. [1 ]
Williams, Jere A. [1 ]
Beamon, Nila A. [1 ]
Adams, Jada I. [1 ]
Tunis, Jeremiah V. [1 ]
Yang, Lingyu [2 ]
Schaefer, Jennifer L. [2 ]
Wu, James J. [3 ]
机构
[1] Xavier Univ Louisiana, Dept Chem, New Orleans, LA 70125 USA
[2] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
[3] NASA Glenn Res Ctr, Cleveland, OH 44135 USA
基金
美国国家科学基金会;
关键词
composite solid polymer electrolytes; solid-statebattery; solid-state electrolyte; lithium metalbattery; lithium-ion conductivity; ION-CONDUCTING MEMBRANE; CERAMIC FILLERS; STATE; STABILITY; LI7LA3ZR2O12; DYNAMICS; ANODE; TA;
D O I
10.1021/acsami.4c08181
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composite solid polymer electrolytes (CSPEs) are safer alternatives to liquid electrolytes and excellent candidates for high-voltage solid-state batteries. However, interfacial instabilities between the electrodes and CSPEs are one of the bottlenecks in pursuing these systems. In this study, a cross-linked CSPE was synthesized based on polypropylene carbonate, polyethylene glycol methyl ether acrylate, polyethylene glycol diacrylate with additives including lithium bis(trifluoromethane)sulfonimide salt, and tantalum-doped lithium lanthanum zirconium oxide (LLZTO). Mass fractions of 10, 20, and 40% LLZTO were added to the CSPE matrix. In a symmetric cell, lithium plating and stripping revealed that the interface between the lithium metal anode and CSPE with 10% of the LLZTO (CSPE-10LLZTO) shows the most stable interface. The CSPE-10LLZTO sample demonstrated high flexibility and showed no degradation over 800 h of cycling at varying current densities. The ionic conductivity for the CSPE-10LLZTO sample at 40 degrees C was 6.4 x 10(-4) S/cm. An all-solid-state full cell was fabricated with LiNi0.5Mn0.3Co0.2O2 as the cathode, CSPE-10LLZTO as the electrolyte and separator, and Li metal as the anode, delivering approximately 140 mAh/g of capacity. Differential scanning calorimetry measurements on CSPE-xLLZTO showed high miscibility and the elimination of crystallinity. Raman spectroscopy revealed uniformity in the structure. These findings demonstrate the capability of the CSPEs to develop high-voltage solid-state lithium metal batteries.
引用
收藏
页码:44791 / 44801
页数:11
相关论文
共 50 条
  • [1] Preparation and Electrochemical Performance of Li6.4La3Zr1.4Ta0.6O12/Polymer-Based Solid Composite Electrolyte
    Tu Fang-Fang
    Xie Jian
    Guo Feng
    Zhao Xin-Bing
    Wang Yu-Ping
    Chen Dong
    Xiang Jia-Yuan
    Chen Jian
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (08) : 1515 - 1523
  • [2] High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries
    Zha, Wenping
    Chen, Fei
    Yang, Dunjie
    Shen, Qiang
    Zhang, Lianmeng
    JOURNAL OF POWER SOURCES, 2018, 397 : 87 - 94
  • [3] Cold Sintering of Li6.4La3Zr1.4Ta0.6O12/PEO Composite Solid Electrolytes
    He, Binlang
    Kang, Shenglin
    Zhao, Xuetong
    Zhang, Jiexin
    Wang, Xilin
    Yang, Yang
    Yang, Lijun
    Liao, Ruijin
    MOLECULES, 2022, 27 (19):
  • [4] Elastic Modulus,Hardness,and Fracture Toughness of Li6.4La3Zr1.4Ta0.6O12 Solid Electrolyte
    Shan Hu
    Pengyu Xu
    Luize Scalco de Vasconcelos
    Lia Stanciu
    Hongwei Ni
    Kejie Zhao
    Chinese Physics Letters, 2021, 38 (09) : 163 - 173
  • [5] Elastic Modulus, Hardness, and Fracture Toughness of Li6.4La3Zr1.4Ta0.6O12 Solid Electrolyte
    Hu, Shan
    Xu, Pengyu
    de Vasconcelos, Luize Scalco
    Stanciu, Lia
    Ni, Hongwei
    Zhao, Kejie
    CHINESE PHYSICS LETTERS, 2021, 38 (09)
  • [6] Ultrathin Solid Composite Electrolyte Based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/Succinonitrile for High-Performance Solid-State Lithium Metal Batteries
    Wei, Tao
    Zhang, Zao-Hong
    Wang, Zhi-Meng
    Zhang, Qi
    Ye, Yu-sheng
    Lu, Jia-Hao
    Rahman, Zia Ur
    Zhang, Zhi-Wei
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) : 9428 - 9435
  • [7] Dual-salt effect on polyethylene oxide/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte for solid-state lithium metal batteries with superior electrochemical performance
    Zhu, Fangyan
    Cheng, Samson Ho-Sum
    Xu, Yi
    Liao, Wenchao
    He, Kangqiang
    Chen, Dazhu
    Liao, Chengzhu
    Cheng, Xin
    Tang, Jiaoning
    Li, Robert K. Y.
    Liu, Chen
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 210
  • [8] Polyether sulfone and Li6.4La3Zr1.4Ta0.6O12 based polymer-in-ceramic electrolyte with enhanced conductivity at low temperature for solid state lithium batteries
    Sun, Jiawen
    Tian, Meng
    Dong, Hongchun
    Lu, Zhengyi
    Peng, Lin
    Rong, Yi
    Yang, Ruizhi
    Shu, Jie
    Jin, Chao
    APPLIED MATERIALS TODAY, 2022, 27
  • [9] Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries
    Guo, Qingya
    Xu, Fanglin
    Shen, Lin
    Wang, Zhiyan
    Wang, Jia
    He, Hao
    Yao, Xiayin
    JOURNAL OF POWER SOURCES, 2021, 498
  • [10] Lithium Expulsion from the Solid-State Electrolyte Li6.4La3Zr1.4Ta0.6O12 by Controlled Electron Injection in a SEM
    Xie, Xiaowei
    Xing, Juanjuan
    Hu, Dongli
    Gu, Hui
    Chen, Cheng
    Guo, Xiangxin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) : 5978 - 5983