An introduction to variational quantum algorithms for combinatorial optimization problems

被引:0
|
作者
Grange, Camille [1 ,2 ]
Poss, Michael [1 ]
Bourreau, Eric [1 ]
机构
[1] Univ Montpellier, LIRMM, CNRS, Montpellier, France
[2] SNCF, Technol Innovat & Grp Projects Dept, St Denis, France
关键词
Variational quantum algorithm; QAOA; Combinatorial optimization; Metaheuristics;
D O I
10.1007/s10479-024-06253-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Noisy intermediate-scale quantum computers are now readily available, motivating many researchers to experiment with Variational Quantum Algorithms. Among them, the Quantum Approximate Optimization Algorithm is one of the most popular one studied by the combinatorial optimization community. In this tutorial, we provide a mathematical description of the class of Variational Quantum Algorithms, assuming no previous knowledge of quantum physics from the readers. We introduce precisely the key aspects of these hybrid algorithms on the quantum side (parametrized quantum circuit) and the classical side (guiding function, optimizer). We devote a particular attention to QAOA, detailing the quantum circuits involved in that algorithm, as well as the properties satisfied by its possible guiding functions. Finally, we discuss the recent literature on QAOA, highlighting several research trends.
引用
收藏
页码:847 / 884
页数:38
相关论文
共 50 条
  • [41] Combinatorial algorithms for feedback problems in directed graphs
    Demetrescu, C
    Finocchi, I
    INFORMATION PROCESSING LETTERS, 2003, 86 (03) : 129 - 136
  • [42] Solving minimum distance problems with convex or concave bodies using combinatorial global optimization algorithms
    Carretero, JA
    Nahon, MA
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (06): : 1144 - 1155
  • [43] Metaheuristics for dynamic combinatorial optimization problems
    Yang, Shengxiang
    Jiang, Yong
    Trung Thanh Nguyen
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2013, 24 (04) : 451 - 480
  • [44] Artificial Intelligence Problems and Combinatorial Optimization
    Timofieva, N. K.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2023, 59 (04) : 511 - 518
  • [45] Domination analysis of combinatorial optimization problems
    Gutin, G
    Vainshtein, A
    Yeo, A
    DISCRETE APPLIED MATHEMATICS, 2003, 129 (2-3) : 513 - 520
  • [46] Artificial Intelligence Problems and Combinatorial Optimization
    N. K. Timofieva
    Cybernetics and Systems Analysis, 2023, 59 : 511 - 518
  • [47] COLOR CONSTRAINED COMBINATORIAL OPTIMIZATION PROBLEMS
    HAMACHER, HW
    RENDL, F
    OPERATIONS RESEARCH LETTERS, 1991, 10 (04) : 211 - 219
  • [48] Dominance rules in combinatorial optimization problems
    Jouglet, Antoine
    Carlier, Jacques
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 212 (03) : 433 - 444
  • [49] Combinatorial optimization algorithms for radio network planning
    Calégari, P
    Guidec, F
    Kuonen, P
    Nielsen, F
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 235 - 245
  • [50] Combinatorial Optimization Problems in Engineering Applications
    Mittelmann, Hans D.
    NUMERICAL ANALYSIS AND OPTIMIZATION, 2018, 235 : 193 - 208