Tailoring SnO2 structures for enhanced Pd/SnO2 catalytic activity in low-concentration methane oxidation

被引:1
|
作者
Hu, Weibo [1 ]
Chen, Wanru [2 ]
Shi, Jixin [2 ]
Lin, Chao [1 ,2 ]
Li, Xiaopeng [1 ,2 ]
机构
[1] Ningbo Univ Technol, Sch New Energy, Ningbo 315336, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
关键词
low-concentration CH 4 oxidation; Pd/SnO; 2; catalysts; SnO; morphology; Catalyst design; SOLID-SOLUTION; CO; PD/CEO2; SUPPORT;
D O I
10.1016/j.apsusc.2024.160875
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin dioxide (SnO2) nanorods, nanosheets, and nanoparticles were synthesized to explore the influence of morphology on the catalytic performance of Pd/SnO2 in CH4 oxidation. Among these, Pd/SnO2 nanorods exhibited superior activity, achieving the earliest onset of methane conversion (T10%at 227 degrees C) and complete conversion (T100% at 400 degrees C), compared to nanosheets and nanoparticles. The structure-activity study indicates that the nanorod morphology not only enhances the availability of active oxygen species and increases the Pd2+/ Pd4+ ratio, but also lowers the reduction temperature of Pd-O-Sn moieties. These features collectively enhance the oxidation of CH4. This study highlights the critical role of SnO2 morphology in optimizing the catalytic efficiency of Pd/SnO2, providing valuable insights for designing catalysts aimed at low-concentration CH4 oxidation.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors
    Brunet, E.
    Maier, T.
    Mutinati, G. C.
    Steinhauer, S.
    Koeck, A.
    Gspan, C.
    Grogger, W.
    SENSORS AND ACTUATORS B-CHEMICAL, 2012, 165 (01) : 110 - 118
  • [22] SnO2 Nanoslab as NO2 Sensor: Identification of the NO2 Sensing Mechanism on a SnO2 Surface
    Maeng, Sunglyul
    Kim, Sang-Woo
    Lee, Deuk-Hee
    Moon, Seung-Eon
    Kim, Ki-Chul
    Maiti, Amitesh
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (01) : 357 - 363
  • [23] Growth and Characterization of ZnO, SnO2 and ZnO/SnO2 Nanostructures from the Vapor Phase
    O. A. Fouad
    G. Glaspell
    M. S. El-Shall
    Topics in Catalysis, 2008, 47 : 84 - 96
  • [24] An HAXPES study of Sn, SnS, SnO and SnO2
    Fondell, M.
    Gorgoi, M.
    Boman, M.
    Lindblad, A.
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2014, 195 : 195 - 199
  • [25] Morphology adjustment of SnO2 and SnO2/CeO2 one dimensional nanostructures towards applications in gas sensing and CO oxidation
    Liu, Yunshi
    Yang, Ping
    Li, Jia
    Matras-Postolek, Katarzyna
    Yue, Yunlong
    Huang, Baibiao
    RSC ADVANCES, 2015, 5 (119): : 98500 - 98507
  • [26] Detection of peroxides using Pd/SnO2 nanocomposite catalysts
    Chu, Yun
    Mallin, Daniel
    Amani, Matin
    Platek, Michael J.
    Gregory, Otto J.
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 197 : 376 - 384
  • [27] Nanostructure SnO2 and supported Au catalysts:: Synthesis, characterization, and catalytic oxidation of CO
    Wang, SR
    Huang, J
    Zhao, YQ
    Wang, SP
    Wu, SH
    Zhang, SM
    Huang, WP
    MATERIALS LETTERS, 2006, 60 (13-14) : 1706 - 1709
  • [28] Defects and Pd growth on the reduced SnO2(100) surface
    Katsiev, Khabibulakh
    Batzill, Matthias
    Boatner, Lynn A.
    Diebold, Ulrike
    SURFACE SCIENCE, 2008, 602 (09) : 1699 - 1704
  • [29] Fabrication of different SnO2 nanorods for enhanced photocatalytic degradation and antibacterial activity
    Govindhan Gnanamoorthy
    Virendra Kumar Yadav
    Krishna Kumar Yadav
    Kandasamy Ramar
    Javed Alam
    Arun Kumar Shukla
    Fekri Abdulraqeb Ahmed Ali
    Mansour Alhoshan
    Environmental Science and Pollution Research, 2023, 30 : 71574 - 71584
  • [30] CO consumption of Pd doped SnO2 based sensors
    Kappler, J
    Tomescu, A
    Barsan, N
    Weimar, U
    THIN SOLID FILMS, 2001, 391 (02) : 186 - 191