The Current State of Single-Cell Proteomics Data Analysis

被引:8
|
作者
Vanderaa, Christophe [1 ]
Gatto, Laurent [1 ]
机构
[1] Catholic Univ Louvain, Duve Inst, Computat Biol & Bioinformat Unit CBIO, Brussels, Belgium
来源
CURRENT PROTOCOLS | 2023年 / 3卷 / 01期
关键词
data analysis; mass spectrometry; proteomics; reproducible research; single-cell; HIGH-THROUGHPUT; DATA SETS; QUANTIFICATION; STRATEGY;
D O I
10.1002/cpz1.658
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Sound data analysis is essential to retrieve meaningful biological information from single-cell proteomics experiments. This analysis is carried out by computational methods that are assembled into workflows, and their implementations influence the conclusions that can be drawn from the data. In this work, we explore and compare the computational workflows that have been used over the last four years and identify a profound lack of consensus on how to analyze single-cell proteomics data. We highlight the need for benchmarking of computational workflows and standardization of computational tools and data, as well as carefully designed experiments. Finally, we cover the current standardization efforts that aim to fill the gap, list the remaining missing pieces, and conclude with lessons learned from the replication of published single-cell proteomics analyses. (c) 2023 Wiley Periodicals LLC.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Single-cell chromatin state analysis with Signac
    Tim Stuart
    Avi Srivastava
    Shaista Madad
    Caleb A. Lareau
    Rahul Satija
    Nature Methods, 2021, 18 : 1333 - 1341
  • [32] Single-cell chromatin state analysis with Signac
    Stuart, Tim
    Srivastava, Avi
    Madad, Shaista
    Lareau, Caleb A.
    Satija, Rahul
    NATURE METHODS, 2021, 18 (11) : 1333 - +
  • [33] Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition
    Valdemaras Petrosius
    Pedro Aragon-Fernandez
    Nil Üresin
    Gergo Kovacs
    Teeradon Phlairaharn
    Benjamin Furtwängler
    Jeff Op De Beeck
    Sarah L. Skovbakke
    Steffen Goletz
    Simon Francis Thomsen
    Ulrich auf dem Keller
    Kedar N. Natarajan
    Bo T. Porse
    Erwin M. Schoof
    Nature Communications, 14 (1)
  • [34] Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition
    Petrosius, Valdemaras
    Aragon-Fernandez, Pedro
    Ueresin, Nil
    Kovacs, Gergo
    Phlairaharn, Teeradon
    Furtwaengler, Benjamin
    op de Beeck, Jeff
    Skovbakke, Sarah L.
    Goletz, Steffen
    Thomsen, Simon Francis
    Keller, Ulrich auf dem
    Natarajan, Kedar N.
    Porse, Bo T.
    Schoof, Erwin M.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [35] Decoding uterine leiomyoma tumorigenesis using single-cell transcriptomics and single-cell proteomics
    Machado-Lopez, A.
    Perez-Moraga, R.
    Punzon-Jimenez, P.
    Llera-Oyola, J.
    Galvez-Viedma, M.
    Grases, D.
    Aragon-Fernandez, P.
    Satorres, E.
    Roson, B.
    Schoof, E. M.
    Porta-Pardo, E.
    Simon, C.
    Mas, A.
    HUMAN REPRODUCTION, 2023, 38
  • [36] Cancer-associated fibroblast classification in single-cell and spatial proteomics data
    Lena Cords
    Sandra Tietscher
    Tobias Anzeneder
    Claus Langwieder
    Martin Rees
    Natalie de Souza
    Bernd Bodenmiller
    Nature Communications, 14
  • [37] Single-Cell Analysis: Technology, Data Analysis, and Applications
    Hwang, Daehee
    MOLECULES AND CELLS, 2023, 46 (02) : 69 - 70
  • [38] Cancer-associated fibroblast classification in single-cell and spatial proteomics data
    Cords, Lena
    Tietscher, Sandra
    Anzeneder, Tobias
    Langwieder, Claus
    Rees, Martin
    de Souza, Natalie
    Bodenmiller, Bernd
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [39] IceR improves proteome coverage and data completeness in global and single-cell proteomics
    Kalxdorf, Mathias
    Mueller, Torsten
    Stegle, Oliver
    Krijgsveld, Jeroen
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [40] IceR improves proteome coverage and data completeness in global and single-cell proteomics
    Mathias Kalxdorf
    Torsten Müller
    Oliver Stegle
    Jeroen Krijgsveld
    Nature Communications, 12