Competition and Pricing Strategy of Electric Vehicle Charging Services Considering Mobile Charging

被引:2
|
作者
Ding, Yating [1 ]
Chen, Feng [1 ]
Feng, Jianghong [2 ]
Cheng, Huibing [3 ]
机构
[1] Jinan Univ, Sch Management, Guangzhou 510632, Peoples R China
[2] South China Agr Univ, Sch Econ & Management, Guangzhou 510640, Peoples R China
[3] Guangzhou Railway Polytech, Sch Transportat & Logist, Guangzhou 510430, Guangdong, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Pricing; Robots; Costs; Charging stations; Electric vehicle charging; Carbon dioxide; Robot kinematics; Game theory; electric vehicles charging; mobile charging vehicles; mobile charging robots; pricing strategy;
D O I
10.1109/ACCESS.2024.3418996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electric vehicles (EVs) have emerged as the pivotal strategy for mitigating carbon emissions. Nevertheless, the lack and imbalance of charging facilities have greatly reduced consumers' willingness to buy EVs, thereby leading to stagnation in the EV market. Although many studies focus on the imbalance in the EV market, few of them have explored the pricing strategies of charging service providers from the perspective of consumers. Therefore, to assist charging service providers in optimizing pricing decisions, we propose a consumer-perspective utility model. Specially, this utility model analyzes both time and travel costs. Furthermore, considering three charging technologies including fixed charging, mobile charging vehicles, and mobile charging robots, we then apply game theory to characterize charging services providers competition scenarios between charging services providers. After theoretical and numerical analyses, we have the following five conclusions: 1) with the high time cost for consumers, the profits of fixed charging exceed those of mobile charging vehicles; 2) mobile charging robots intensify competition in the charging market and lower the price of conventional charging services; 3) mobile charging robots also reduce the demands for fixed charging services and expedite technological substitution; 4) cost of consumers time has a positive influence on mobile charging vehicles but a negative effect on other charging services; and 5) profits of the three charging providers increase with higher consumer time costs. Finally, we propose an innovative market analyzing tool based on research findings to assist charging service providers in their decision-making process.
引用
收藏
页码:88739 / 88755
页数:17
相关论文
共 50 条
  • [31] Optimal Sizing of Electric Vehicle Charging Stacks Considering a Multiscenario Strategy and User Satisfaction
    Zhou, Yinghong
    Yang, Weihao
    Yang, Zhijing
    Chen, Ruihan
    ELECTRONICS, 2024, 13 (16)
  • [32] A Distributed Electric Vehicle Charging Scheduling Platform Considering Aggregators Coordination
    Afshar, Shahab
    Disfani, Vahid
    Siano, Pierluigi
    IEEE ACCESS, 2021, 9 : 151294 - 151305
  • [33] Pricing for Electric Vehicle Charging Stations Based on the Responsiveness of Demand
    Lai, Shuying
    Qiu, Jing
    Tao, Yuechuan
    Zhao, Junhua
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (01) : 530 - 544
  • [34] Pricing and Investment Strategies for Electric Vehicle Battery Charging and Swapping
    Xu S.-X.
    Xie B.
    Qin W.
    Cheng H.-B.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (05): : 183 - 189
  • [35] Development of Electric Vehicle Charging Tariff Strategy for Indonesian Grid Authority With Real-Time Elasticity Pricing
    Adi Sesotyo, Priyo
    Dalimi, Rinaldy
    Sudiarto, Budi
    IEEE ACCESS, 2024, 12 : 160343 - 160358
  • [36] Laxity Differentiated Pricing and Deadline Differentiated Threshold Scheduling for a Public Electric Vehicle Charging Station
    Hao, Liangliang
    Jin, Jiangliang
    Xu, Yunjian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6192 - 6202
  • [37] Learning to Operate an Electric Vehicle Charging Station Considering Vehicle-Grid Integration
    Ye, Zuzhao
    Gao, Yuanqi
    Yu, Nanpeng
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (04) : 3038 - 3048
  • [38] Strategic Pricing of Electric Vehicle Charging Service Providers in Coupled Power-Transportation Networks
    Li, Ke
    Shao, Chengcheng
    Zhang, Hongcai
    Wang, Xifan
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (03) : 2189 - 2201
  • [39] An Analysis of Price Competition in Heterogeneous Electric Vehicle Charging Stations
    Lee, Woongsup
    Schober, Robert
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (04) : 3990 - 4002
  • [40] Electric vehicle charging load prediction and charging station planning considering traffic flow capture
    Sun L.
    Shen C.
    Zhu T.
    Yang G.
    Yang M.
    Sun Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (07): : 263 - 270