On Statistical Riemann-Stieltjes Integrablility and Deferred Cesàro Summability

被引:0
|
作者
Jena, Bidu Bhusan [1 ]
Paikray, Susanta Kumar [2 ]
Mursaleen, M. [3 ,4 ]
机构
[1] Sri Sri Univ, Fac Sci Math, Cuttack 754006, Odisha, India
[2] Veer Surendra Sai Univ Technol, Dept Math, Burla 768018, Odisha, India
[3] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] Aligarh Muslim Univ, Dept Math, Aligarh, India
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 03期
关键词
Riemann-Stieltjes integral; statistical Riemann-Stieltjes integral; deferred Ces & agrave; ro mean; distribution functions; random variables; PROBABILITY CONVERGENCE; CESARO; SEQUENCES;
D O I
10.37256/cm.5320242466
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce and study the notion of statistical Riemann-Stieltjes sum for the sequence of functions and establish some elementary results based on this notion. Subsequently, we extend this notion to the probability space and demonstrate some new results for sequence of distribution functions. Furthermore, we suggest the deferred Ces & agrave;ro summability method for Riemann-Stieltjes sum. We then establish various inclusion theorems based on our proposed methods in association with the Riemann-Stieltjes sum for the sequence of usual functions as well as distribution functions in R-n.
引用
收藏
页码:2782 / 2800
页数:19
相关论文
共 50 条
  • [31] Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators
    Dragomir, S. S.
    Abelman, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [32] SOME INEQUALITIES RELATING TO UPPER AND LOWER BOUNDS FOR THE RIEMANN-STIELTJES INTEGRAL
    Dragomir, S. S.
    Pearce, C. E. M.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (04): : 607 - 616
  • [33] Accurate approximations of the Riemann-Stieltjes integral with (l,L)-Lipschitzian integrators
    Dragomir, Sever S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 686 - 690
  • [34] POSITIVE SOLUTION FOR A FRACTIONAL SWITCHED SYSTEM INVOLVING RIEMANN-STIELTJES INTEGRAL
    Yang, Yang
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (03): : 57 - 68
  • [35] The Beesack-Darst-Pollard inequalities and approximations of the Riemann-Stieltjes integral
    Barnett, N. S.
    Dragomir, S. S.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (01) : 58 - 63
  • [36] Interval criteria for forced oscillation with nonlinearities given by Riemann-Stieltjes integrals
    Sun, Yuangong
    Kong, Qingkai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) : 243 - 252
  • [37] MIDPOINT DERIVATIVE-BASED TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL
    Zhao, Weijing
    Zhang, Zhaoning
    Ye, Zhijian
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 369 - 376
  • [38] Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators
    SS Dragomir
    S Abelman
    Journal of Inequalities and Applications, 2013 (1)
  • [39] COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA
    Zhao, Weijing
    Zhang, Zhaoning
    Ye, Zhijian
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 311 - 318
  • [40] Oscillation of impulsive functional differential equations with oscillatory potentials and Riemann-Stieltjes integrals
    Liu, Zhi
    Sun, Yuangong
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,