Multi-Agent Deep Reinforcement Learning Based Dynamic Task Offloading in a Device-to-Device Mobile-Edge Computing Network to Minimize Average Task Delay with Deadline Constraints

被引:2
|
作者
He, Huaiwen [1 ]
Yang, Xiangdong [1 ,2 ]
Mi, Xin [1 ,2 ]
Shen, Hong [3 ]
Liao, Xuefeng [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp, Zhongshan Inst, Zhongshan 528400, Peoples R China
[2] Univ Elect Sci & Technol China, Comp Sci & Engn Sch, Chengdu 611731, Peoples R China
[3] Cent Queensland Univ, Engn & Technol, Rockhampton 4701, Australia
[4] Wenzhou Univ Technol, Sch Data Sci & Artificial Intelligence, Wenzhou 325027, Peoples R China
关键词
mobile edge computing; dynamic matching; D2D; delay constraint; multi-agent reinforcement learning; RESOURCE-ALLOCATION; MEC; D2D;
D O I
10.3390/s24165141
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Device-to-device (D2D) is a pivotal technology in the next generation of communication, allowing for direct task offloading between mobile devices (MDs) to improve the efficient utilization of idle resources. This paper proposes a novel algorithm for dynamic task offloading between the active MDs and the idle MDs in a D2D-MEC (mobile edge computing) system by deploying multi-agent deep reinforcement learning (DRL) to minimize the long-term average delay of delay-sensitive tasks under deadline constraints. Our core innovation is a dynamic partitioning scheme for idle and active devices in the D2D-MEC system, accounting for stochastic task arrivals and multi-time-slot task execution, which has been insufficiently explored in the existing literature. We adopt a queue-based system to formulate a dynamic task offloading optimization problem. To address the challenges of large action space and the coupling of actions across time slots, we model the problem as a Markov decision process (MDP) and perform multi-agent DRL through multi-agent proximal policy optimization (MAPPO). We employ a centralized training with decentralized execution (CTDE) framework to enable each MD to make offloading decisions solely based on its local system state. Extensive simulations demonstrate the efficiency and fast convergence of our algorithm. In comparison to the existing sub-optimal results deploying single-agent DRL, our algorithm reduces the average task completion delay by 11.0% and the ratio of dropped tasks by 17.0%. Our proposed algorithm is particularly pertinent to sensor networks, where mobile devices equipped with sensors generate a substantial volume of data that requires timely processing to ensure quality of experience (QoE) and meet the service-level agreements (SLAs) of delay-sensitive applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Task graph offloading via deep reinforcement learning in mobile edge computing
    Liu, Jiagang
    Mi, Yun
    Zhang, Xinyu
    Li, Xiaocui
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 545 - 555
  • [32] Divisible Task Offloading for Multiuser Multiserver Mobile Edge Computing Systems Based on Deep Reinforcement Learning
    Tang, Lin
    Qin, Hang
    IEEE ACCESS, 2023, 11 : 83507 - 83522
  • [33] Dependency-aware task offloading based on deep reinforcement learning in mobile edge computing networks
    Li, Junnan
    Yang, Zhengyi
    Chen, Kai
    Ming, Zhao
    Li, Xiuhua
    Fan, Qilin
    Hao, Jinlong
    Cheng, Luxi
    WIRELESS NETWORKS, 2024, 30 (06) : 5519 - 5531
  • [34] Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles
    Wang, Jianxi
    Wang, Liutao
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021,
  • [35] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654
  • [36] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [37] Multi-agent deep reinforcement learning for computation offloading in cooperative edge network
    Wu, Pengju
    Guan, Yepeng
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 567 - 591
  • [38] Reinforcement Learning for Task Offloading in Mobile Edge Computing for SDN based Wireless Networks
    Kiran, Nahida
    Pan, Chunyu
    Yin Changchuan
    2020 SEVENTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2020, : 268 - 273
  • [39] Task offloading in Multiple-Services Mobile Edge Computing: A deep reinforcement learning algorithm
    Peng, Ziyu
    Wang, Gaocai
    Nong, Wang
    Qiu, Yu
    Huang, Shuqiang
    COMPUTER COMMUNICATIONS, 2023, 202 : 1 - 12
  • [40] Request-Aware Task Offloading in Mobile Edge Computing via Deep Reinforcement Learning
    Sheng, Ziwen
    Mao, Yingchi
    Wang, Jiajun
    Nie, Hua
    Huang, Jianxin
    2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 294 - 299