Multi-Agent Deep Reinforcement Learning Based Dynamic Task Offloading in a Device-to-Device Mobile-Edge Computing Network to Minimize Average Task Delay with Deadline Constraints

被引:2
|
作者
He, Huaiwen [1 ]
Yang, Xiangdong [1 ,2 ]
Mi, Xin [1 ,2 ]
Shen, Hong [3 ]
Liao, Xuefeng [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp, Zhongshan Inst, Zhongshan 528400, Peoples R China
[2] Univ Elect Sci & Technol China, Comp Sci & Engn Sch, Chengdu 611731, Peoples R China
[3] Cent Queensland Univ, Engn & Technol, Rockhampton 4701, Australia
[4] Wenzhou Univ Technol, Sch Data Sci & Artificial Intelligence, Wenzhou 325027, Peoples R China
关键词
mobile edge computing; dynamic matching; D2D; delay constraint; multi-agent reinforcement learning; RESOURCE-ALLOCATION; MEC; D2D;
D O I
10.3390/s24165141
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Device-to-device (D2D) is a pivotal technology in the next generation of communication, allowing for direct task offloading between mobile devices (MDs) to improve the efficient utilization of idle resources. This paper proposes a novel algorithm for dynamic task offloading between the active MDs and the idle MDs in a D2D-MEC (mobile edge computing) system by deploying multi-agent deep reinforcement learning (DRL) to minimize the long-term average delay of delay-sensitive tasks under deadline constraints. Our core innovation is a dynamic partitioning scheme for idle and active devices in the D2D-MEC system, accounting for stochastic task arrivals and multi-time-slot task execution, which has been insufficiently explored in the existing literature. We adopt a queue-based system to formulate a dynamic task offloading optimization problem. To address the challenges of large action space and the coupling of actions across time slots, we model the problem as a Markov decision process (MDP) and perform multi-agent DRL through multi-agent proximal policy optimization (MAPPO). We employ a centralized training with decentralized execution (CTDE) framework to enable each MD to make offloading decisions solely based on its local system state. Extensive simulations demonstrate the efficiency and fast convergence of our algorithm. In comparison to the existing sub-optimal results deploying single-agent DRL, our algorithm reduces the average task completion delay by 11.0% and the ratio of dropped tasks by 17.0%. Our proposed algorithm is particularly pertinent to sensor networks, where mobile devices equipped with sensors generate a substantial volume of data that requires timely processing to ensure quality of experience (QoE) and meet the service-level agreements (SLAs) of delay-sensitive applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Yang, Jian
    Yuan, Qifeng
    Chen, Shuangwu
    He, Huasen
    Jiang, Xiaofeng
    Tan, Xiaobin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (03): : 3205 - 3219
  • [2] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [3] Multi-agent deep reinforcement learning for collaborative task offloading in mobile edge computing networks
    Chen, Minxuan
    Guo, Aihuang
    Song, Chunlin
    DIGITAL SIGNAL PROCESSING, 2023, 140
  • [4] Dependency-Aware Dynamic Task Offloading Based on Deep Reinforcement Learning in Mobile-Edge Computing
    Fang, Juan
    Qu, Dezheng
    Chen, Huijie
    Liu, Yaqi
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 1403 - 1415
  • [5] Optimization of Task Offloading Strategy for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Zheng, Shuai
    Shen, Yifan
    IEEE ACCESS, 2020, 8 : 202573 - 202584
  • [6] A Task Offloading and Resource Allocation Strategy Based on Multi-Agent Reinforcement Learning in Mobile Edge Computing
    Jiang, Guiwen
    Huang, Rongxi
    Bao, Zhiming
    Wang, Gaocai
    FUTURE INTERNET, 2024, 16 (09)
  • [7] Vehicle Edge Computing Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning
    Bo, Jianxiong
    Zhao, Xu
    JOURNAL OF GRID COMPUTING, 2025, 23 (02)
  • [8] An intelligent task offloading method based on multi-agent deep reinforcement learning in ultra-dense heterogeneous network with mobile edge computing
    Pang, Shanchen
    Wang, Teng
    Gui, Haiyuan
    He, Xiao
    Hou, Lili
    COMPUTER NETWORKS, 2024, 250
  • [9] Heterogeneous multi-agent deep reinforcement learning based low carbon emission task offloading in mobile edge computing
    Zhou, Xiongjie
    Guan, Xin
    Sun, Di
    Zhang, Xiaoguang
    Zhang, Zhaogong
    Ohtsuki, Tomoaki
    COMPUTER COMMUNICATIONS, 2025, 234
  • [10] Dynamic Task Offloading in Multi-Agent Mobile Edge Computing Networks
    Heydari, Javad
    Ganapathy, Viswanath
    Shah, Mohak
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,