Device Scheduling for Secure Aggregation in Wireless Federated Learning

被引:0
作者
Yan, Na [1 ]
Wang, Kezhi [2 ]
Zhi, Kangda [1 ]
Pan, Cunhua [3 ]
Poor, H. Vincent [4 ]
Chai, Kok Keong [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, England
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 17期
关键词
Security; Privacy; Training; Protection; Internet of Things; Computational modeling; Communication system security; Branch-and-bound (BnB); device scheduling; federated learning (FL); integer nonlinear fractional programming;
D O I
10.1109/JIOT.2024.3405855
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) has been widely investigated in academic and industrial fields to resolve the issue of data isolation in the distributed Internet of Things (IoT) while maintaining privacy. However, challenges persist in ensuring adequate privacy and security during the aggregation process. In this article, we investigate device scheduling strategies that ensure the security and privacy of wireless FL. Specifically, we measure the privacy leakage of user data using differential privacy (DP) and assess the security level of the system through the mean-square error security (MSE-security). We commence by deriving the analytical results that reveal the impact of the device scheduling on privacy and security protection, as well as on the learning process. Drawing from these analytical findings, we propose three scheduling policies that can achieve secure aggregation of wireless FL under different cases of channel noise. In particular, we formulate an integer nonlinear fractional programming problem to improve the learning performance while guaranteeing privacy and security of wireless FL. We provide an insightful solution in the closed form to the optimization problem when the model has a high dimension. For the general case, we propose a secure and private aggregation (SPA) algorithm based on the branch-and-bound (BnB) method, which can obtain the optimal solution with low complexity. The effectiveness of the proposed schemes for device selection is validated through simulations.
引用
收藏
页码:28851 / 28862
页数:12
相关论文
共 50 条
  • [31] Secure Gradient Aggregation With Sparsification for Resource-Limited Federated Learning
    Sami, Hasin Us
    Guler, Basak
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (11) : 6883 - 6899
  • [32] Reinforcement Learning-Based Device Scheduling for Renewable Energy-Powered Federated Learning
    Cui, Yangguang
    Cao, Kun
    Wei, Tongquan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6264 - 6274
  • [33] WVFL: Weighted Verifiable Secure Aggregation in Federated Learning
    Zhong, Yijian
    Tan, Wuzheng
    Xu, Zhifeng
    Chen, Shixin
    Weng, Jiasi
    Weng, Jian
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19926 - 19936
  • [34] Adaptive Transmission Scheduling in Wireless Networks for Asynchronous Federated Learning
    Lee, Hyun-Suk
    Lee, Jang-Won
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3673 - 3687
  • [35] Optimized Scheduling Transmissions for Wireless Powered Federated Learning Networks
    Pejoski, Slavche
    Poposka, Marija
    Hadzi-Velkov, Zoran
    IEEE COMMUNICATIONS LETTERS, 2025, 29 (03) : 640 - 644
  • [36] Secure Decentralized Aggregation to Prevent Membership Privacy Leakage in Edge-Based Federated Learning
    Shen, Meng
    Wang, Jing
    Zhang, Jie
    Zhao, Qinglin
    Peng, Bohan
    Wu, Tong
    Zhu, Liehuang
    Xu, Ke
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (03): : 3105 - 3119
  • [37] Secure and Efficient Federated Learning Through Layering and Sharding Blockchain
    Yuan, Shuo
    Cao, Bin
    Sun, Yao
    Wan, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (03): : 3120 - 3134
  • [38] Secure Federated Learning With Fully Homomorphic Encryption for IoT Communications
    Hijazi, Neveen Mohammad
    Aloqaily, Moayad
    Guizani, Mohsen
    Ouni, Bassem
    Karray, Fakhri
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 4289 - 4300
  • [39] Secure Federated Learning for Multi-Party Network Monitoring
    Lytvyn, Oleksandr
    Nguyen, Giang
    IEEE ACCESS, 2024, 12 : 163262 - 163284
  • [40] Debiased Device Sampling for Federated Edge Learning in Wireless Networks
    Chen, Siguang
    Li, Qun
    Shi, Yanhang
    Li, Xue
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (02) : 709 - 721