Device Scheduling for Secure Aggregation in Wireless Federated Learning

被引:0
作者
Yan, Na [1 ]
Wang, Kezhi [2 ]
Zhi, Kangda [1 ]
Pan, Cunhua [3 ]
Poor, H. Vincent [4 ]
Chai, Kok Keong [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, England
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 17期
关键词
Security; Privacy; Training; Protection; Internet of Things; Computational modeling; Communication system security; Branch-and-bound (BnB); device scheduling; federated learning (FL); integer nonlinear fractional programming;
D O I
10.1109/JIOT.2024.3405855
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) has been widely investigated in academic and industrial fields to resolve the issue of data isolation in the distributed Internet of Things (IoT) while maintaining privacy. However, challenges persist in ensuring adequate privacy and security during the aggregation process. In this article, we investigate device scheduling strategies that ensure the security and privacy of wireless FL. Specifically, we measure the privacy leakage of user data using differential privacy (DP) and assess the security level of the system through the mean-square error security (MSE-security). We commence by deriving the analytical results that reveal the impact of the device scheduling on privacy and security protection, as well as on the learning process. Drawing from these analytical findings, we propose three scheduling policies that can achieve secure aggregation of wireless FL under different cases of channel noise. In particular, we formulate an integer nonlinear fractional programming problem to improve the learning performance while guaranteeing privacy and security of wireless FL. We provide an insightful solution in the closed form to the optimization problem when the model has a high dimension. For the general case, we propose a secure and private aggregation (SPA) algorithm based on the branch-and-bound (BnB) method, which can obtain the optimal solution with low complexity. The effectiveness of the proposed schemes for device selection is validated through simulations.
引用
收藏
页码:28851 / 28862
页数:12
相关论文
共 50 条
  • [1] VERSA: Verifiable Secure Aggregation for Cross-Device Federated Learning
    Hahn, Changhee
    Kim, Hodong
    Kim, Minjae
    Hur, Junbeom
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (01) : 36 - 52
  • [2] Scheduling and Aggregation Design for Asynchronous Federated Learning Over Wireless Networks
    Hu, Chung-Hsuan
    Chen, Zheng
    Larsson, Erik G.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 874 - 886
  • [3] Exploring Representativity in Device Scheduling for Wireless Federated Learning
    Chen, Zhixiong
    Yi, Wenqiang
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (01) : 720 - 735
  • [4] SVFLC: Secure and Verifiable Federated Learning With Chain Aggregation
    Li, Ning
    Zhou, Ming
    Yu, Haiyang
    Chen, Yuwen
    Yang, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13125 - 13136
  • [5] SAEV: Secure Aggregation and Efficient Verification for Privacy-Preserving Federated Learning
    Wang, Junkai
    Wang, Rong
    Xiong, Ling
    Xiong, Neal
    Liu, Zhicai
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39681 - 39696
  • [6] FedGT: Identification of Malicious Clients in Federated Learning With Secure Aggregation
    Xhemrishi, Marvin
    Oestman, Johan
    Wachter-Zeh, Antonia
    Graell i Amat, Alexandre
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2577 - 2592
  • [7] Joint Device Scheduling and Bandwidth Allocation for Federated Learning Over Wireless Networks
    Zhang, Tinghao
    Lam, Kwok-Yan
    Zhao, Jun
    Feng, Jie
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2025, 24 (01) : 3 - 18
  • [8] Reputation-Based Federated Learning for Secure Wireless Networks
    Song, Zhendong
    Sun, Hongguang
    Yang, Howard H.
    Wang, Xijun
    Zhang, Yan
    Quek, Tony Q. S.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (02) : 1212 - 1226
  • [9] Device Scheduling for Relay-Assisted Over-the-Air Aggregation in Federated Learning
    Zhang, Fan
    Chen, Jining
    Wang, Kunlun
    Chen, Wen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7412 - 7417
  • [10] Toward Secure Weighted Aggregation for Privacy-Preserving Federated Learning
    He, Yunlong
    Yu, Jia
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 3475 - 3488