Thermal management for the prismatic lithium-ion battery pack by immersion cooling with Fluorinated liquid

被引:1
|
作者
Li, Yang [1 ]
Bai, Minli [1 ]
Zhou, Zhifu [2 ]
Wu, Wei-Tao [3 ]
Wei, Lei [4 ]
Hu, Chengzhi [1 ]
Liu, Xinyu [1 ]
Gao, Shuai [1 ]
Li, Yubai [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116023, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery thermal management; Lithium-ion battery; Liquid immersion cooling; Energy density; Two-phase heat transfer; PERFORMANCE; SYSTEM; DEGRADATION; CONVECTION; ISSUES; MODEL; CYCLE; LIFE; CELL;
D O I
10.1016/j.applthermaleng.2024.124453
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study constructs a novel FS49-based battery thermal management system (BTMS), proposing an optimization method for the system energy density and an indirect control method for the system cooling capacity. The boiling of dielectric refrigerant occurred at the battery surface, which provided strong and uniform cooling for each battery cell. The results show that the peak temperature difference of liquid immersion cooling (LIC) module during 1C rate discharging and charging was reduced by 91.3% and 94.44%, respectively, compared to the natural convection (NC) module. The reduction of temperature nonuniformity greatly reduced the state of charge (SOC) inhomogeneity of different cells within the module. Moreover, the energy density of LIC module can be optimized by reducing the cell spacing and liquid filling ratio. Comparing with 100% filling rate, the module maximum temperature corresponding to 25% filling rate (with wick) during 2C rate discharging is only increased by 1.6degree celsius, however, the module peak temperature difference is reduced by 53.3%, and the energy density is increased by 13.14%. In addition, Equivalent circuit model (ECM) and volume of fluid (VOF) model were used to simulate the LIC module, and the numerical results are in good agreement with the experimental data. This study provides a systematic design plan and numerical method for the engineering application of LIC in the field of BTMS.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Optimization and Numerical Simulation of Novel Air-cooling System for the Thermal Management of Lithium-ion Battery Pack
    Lin, Xiongchao
    Shao, Keke
    Wang, Caihong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (01):
  • [32] Numerical optimization of the cooling effect of a bionic fishbone channel liquid cooling plate for a large prismatic lithium-ion battery pack with high discharge rate
    Fan, Xu
    Meng, Chao
    Yang, Yawen
    Lin, Jiashen
    Li, Wanyou
    Zhao, Yingru
    Xie, Shan
    Jiang, Chenxing
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [33] Thermal Management of Lithium-Ion Battery Pack Using Equivalent Circuit Model
    Kaliaperumal, Muthukrishnan
    Chidambaram, Ramesh Kumar
    VEHICLES, 2024, 6 (03): : 1200 - 1215
  • [34] Thermal Management of a 48 V Lithium-Ion Battery Pack by Semiconductor Refrigeration
    Yang, Rui
    Li, Kuining
    Xie, Yi
    Li, Wei
    Qian, Yuping
    Zhang, Yangjun
    Zhang, Hongxiang
    FRONTIERS IN ENERGY RESEARCH, 2022, 9
  • [35] Experimental study on the thermal management performance of immersion cooling for 18650 lithium-ion battery module
    Zhao, Luyao
    Tong, Jun
    Zheng, Minxue
    Chen, Mingyi
    Li, Wei
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 192 : 634 - 642
  • [36] Numerical investigation on manifold immersion cooling scheme for lithium ion battery thermal management application
    Le, Qin
    Shi, Qianlei
    Liu, Qian
    Yao, Xiaole
    Ju, Xing
    Xu, Chao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 190
  • [37] Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions
    Li, Yang
    Zhou, Zhifu
    Hu, Leiming
    Bai, Minli
    Gao, Linsong
    Li, Yulong
    Liu, Xuanyu
    Li, Yubai
    Song, Yongchen
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 34
  • [38] Investigations of Lithium-Ion Battery Thermal Management System with Hybrid PCM/Liquid Cooling Plate
    Zhang, Ying
    Fu, Qinwen
    Liu, Yao
    Lai, Bozhen
    Ke, Zhaoqing
    Wu, Wei
    PROCESSES, 2023, 11 (01)
  • [39] Exploring the efficacy of nanofluids for lithium-ion battery thermal management
    Mondal, Bittagopal
    Lopez, Carlos F.
    Mukherjee, Partha P.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 : 779 - 794
  • [40] Numerical simulation for comparison of cold plate cooling and HFE-7000 immersion cooling in lithium-ion battery thermal management
    Liu, Xinyu
    Zhou, Zhifu
    Wu, Wei-Tao
    Wei, Lei
    Hu, Chengzhi
    Li, Yang
    Huang, Heng
    Li, Yubai
    Song, Yongchen
    JOURNAL OF ENERGY STORAGE, 2024, 101