Detailed chemical composition analysis of the Soi crater region on Titan

被引:1
|
作者
Solomonidou, A. [1 ,2 ]
Malaska, M. J. [3 ]
Lopes, R. M. C. [3 ]
Coustenis, A. [2 ]
Schoenfeld, A. M. [3 ]
Schmitt, B. [4 ]
Birch, S. P. D. [5 ]
Le Gall, A. [6 ,7 ]
Lawrence, K. [3 ]
Matsoukas, C. [8 ]
Wall, S. D. [9 ]
Elachi, C. [9 ]
机构
[1] Hellen Space Ctr, Athens, Greece
[2] Univ Paris, Sorbonne Univ, CNRS, LESIA,Observ Paris PSL, F-92190 Meudon, France
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
[4] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France
[5] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI USA
[6] UVSQ Univ Paris Saclay, Sorbonne Univ, CNRS, LATMOS,IPSL, Paris, France
[7] Inst Univ France, Paris, France
[8] KTH Royal Inst Technol, Stockholm, Sweden
[9] CALTECH, Pasadena, CA USA
关键词
Titan; Surface composition; Radiative transfer; Ocean worlds; Icy satellites; MU-M REGION; CASSINI VIMS; ABSORPTION-SPECTRUM; INFRARED-ABSORPTION; LINE LISTS; SURFACE; RADAR; METHANE; SPECTROSCOPY; IMAGES;
D O I
10.1016/j.icarus.2024.116215
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Soi crater region (0 degrees degrees to 60 degrees N, degrees N, 180 degrees W degrees W to-110 degrees W), degrees W), which includes the well-preserved Soi crater in its center, spans a region from Titan's aeolian-dominated equatorial regions to fluvially-dominated high northern latitudes. This provides a rich diversity of landscapes, one that is also representative of the diversity encountered across Titan. Schoenfeld et al. (2023) mapped this region at 1:800,000 scale and produced a geomorphological map showing that the area consists of 22 types of geomorphological units. The Visual and Infrared Mapping Spectrometer (VIMS) coverage of the region enabled the detailed analysis of spectra of 261 different locations using a radiative transfer technique and a mixing model, yielding compositional constraints on Titan's optical surface layer. Additional constraints on composition on the near-surface substrate were obtained from microwave emissivity. We have derived combinations of top surface materials between dark materials, tholins, water-ice, and methane suggesting that dark mobile organic material at equatorial and high latitudes indicates "young" terrains and compositions, while tholin/water-ice mixtures that dominate areas around latitude 35 degrees N degrees N show a material that is older plains deposits that we interpret to be the end stage of aeolian and fluvial transport and deposition. We found no spectral evidence of CO2, 2 , HC3N, 3 N, and NH3 3 ice. We use the stratigraphic relations between the various mapping units and the relation between the geomorphology and the composition of the surface layers to build hypotheses on the origin and evolution of the regional geology. We suggest that sedimentary deposits, likely aeolian, are dominant in the region with fluvial activity and leaching changing the nature of the top surfaces of the midlatitude areas of the Soi crater region.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Geomorphological Map of the Soi Crater Region on Titan
    Schoenfeld, A. M.
    Solomonidou, A.
    Malaska, M. J.
    Lopes, R. M. C.
    Birch, S. P. D.
    Le Mouelic, S.
    Florence, M.
    Verlander, T.
    Wall, S. D.
    Elachi, C.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2023, 128 (01)
  • [2] The chemical composition of impact craters on Titan: I. Implications for exogenic processing
    Solomonidou, A.
    Neish, C.
    Coustenis, A.
    Malaska, M.
    Le Gall, A.
    Lopes, R. M. C.
    Werynski, A.
    Markonis, Y.
    Lawrence, K.
    Altobelli, N.
    Witasse, O.
    Schoenfeld, A.
    Matsoukas, C.
    Baziotis, I.
    Drossart, P.
    ASTRONOMY & ASTROPHYSICS, 2020, 641
  • [3] Geology of the Selk crater region on Titan from Cassini VIMS observations
    Soderblom, Jason M.
    Brown, Robert H.
    Soderblom, Laurence A.
    Barnes, Jason W.
    Jaumann, Ralf
    Le Mouelic, Stephane
    Sotin, Christophe
    Stephan, Katrin
    Baines, Kevin H.
    Buratti, Bonnie J.
    Clark, Roger N.
    Nicholson, Philip D.
    ICARUS, 2010, 208 (02) : 905 - 912
  • [4] Geomorphological map of the Afekan Crater region, Titan: Terrain relationships in the equatorial and mid-latitude regions
    Malaska, Michael J.
    Lopes, Rosaly M. C.
    Williams, David A.
    Neish, Catherine D.
    Solomonidou, Anezina
    Soderblom, Jason M.
    Schoenfeld, Ashley M.
    Birch, Sam P. D.
    Hayes, Alex G.
    Le Gall, Alice
    Janssen, Michael A.
    Farr, Thomas G.
    Lorenz, Ralph D.
    Radebaugh, Jani
    Turtle, Elizabeth P.
    ICARUS, 2016, 270 : 130 - 161
  • [5] AN ESTIMATE OF THE CHEMICAL COMPOSITION OF TITAN's LAKES
    Cordier, Daniel
    Mousis, Olivier
    Lunine, Jonathan I.
    Lavvas, Panayotis
    Vuitton, Veronique
    ASTROPHYSICAL JOURNAL LETTERS, 2009, 707 (02) : L128 - L131
  • [6] On the chemical composition of Titan's dry lakebed evaporites
    Cordier, D.
    Barnes, J. W.
    Ferreira, A. G.
    ICARUS, 2013, 226 (02) : 1431 - 1437
  • [7] Titan's lakes chemical composition: Sources of uncertainties and variability
    Cordier, D.
    Mousis, O.
    Lunine, J. I.
    Lebonnois, S.
    Rannou, P.
    Lavvas, P.
    Lobo, L. Q.
    Ferreira, A. G. M.
    PLANETARY AND SPACE SCIENCE, 2012, 61 (01) : 99 - 107
  • [8] Chemical composition of Titan's atmosphere and ionosphere: Observations and the photochemical model
    Krasnopolsky, Vladimir A.
    ICARUS, 2014, 236 : 83 - 91
  • [9] Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis
    Morisson, Marietta
    Szopa, Cyril
    Carrasco, Nathalie
    Buch, Arnaud
    Gautier, Thomas
    ICARUS, 2016, 277 : 442 - 454
  • [10] Spectral analysis of the Cerean geological unit crater central peak material as an indicator of subsurface mineral composition
    Galiano, A.
    Palomba, E.
    Longobardo, A.
    De Sanctis, M. C.
    Carrozzo, F. G.
    Raponi, A.
    Tosi, F.
    Ammannito, E.
    Cloutis, E. A.
    Raymond, C. A.
    Russell, C. T.
    ICARUS, 2019, 318 : 75 - 98