Constructing Microporous Ion Exchange Membranes via Simple Hypercrosslinking for pH-Neutral Aqueous Organic Redox Flow Batteries

被引:9
|
作者
Peng, Kang [1 ]
Zhang, Chao [2 ]
Fang, Junkai [1 ]
Cai, Hongyun [2 ]
Ling, Rene [1 ]
Ma, Yunxin [1 ]
Tang, Gonggen [1 ]
Zuo, Peipei [1 ]
Yang, Zhengjin [1 ]
Xu, Tongwen [1 ]
机构
[1] Univ Sci & Technol China, Sch Chem & Mat Sci, Dept Appl Chem, Key Lab Precis & Intelligent Chem, Hefei 230026, Peoples R China
[2] Suqian Time Energy Storage Technol Co Ltd, Suqian 223800, Peoples R China
基金
中国国家自然科学基金;
关键词
ion exchange membrane; aqueous organic redox flow battery; hypercrosslinking; micropore channel; HIGH-CAPACITY; POLYMERS; LIFETIME; STORAGE;
D O I
10.1002/anie.202407372
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ion exchange membranes (IEMs) play a critical role in aqueous organic redox flow batteries (AORFBs). Traditional IEMs that feature microphase-separated microstructures are well-developed and easily available but suffer from the conductivity/selectivity tradeoff. The emerging charged microporous polymer membranes show the potential to overcome this tradeoff, yet their commercialization is still hindered by tedious syntheses and demanding conditions. We herein combine the advantages of these two types of membrane materials via simple in situ hypercrosslinking of conventional IEMs into microporous ones. Such a concept is exemplified by the very cheap commercial quaternized polyphenylene oxide membrane. The hypercrosslinking treatment turns poor-performance membranes into high-performance ones, as demonstrated by the above 10-fold selectivity enhancement and much-improved conductivities that more than doubled. This turn is also confirmed by the effective and stable pH-neutral AORFB with decreased membrane resistance and at least an order of magnitude lower capacity loss rate. This battery shows advantages over other reported AORFBs in terms of a low capacity loss rate (0.0017 % per cycle) at high current density. This work provides an economically feasible method for designing AORFB-oriented membranes with microporosity. An economically feasible strategy, simple hypercrosslinking, is proposed to construct ion exchange membranes with microporosity. The presented membranes balance well with high ion conductivity and high ion selectivity and show superiority in process simplicity, cost-effectiveness, and anti-swelling, thus enabling high-efficiency and stable cycling of pH-neutral aqueous organic redox flow batteries. image
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Organic Electrolytes for pH-Neutral Aqueous Organic Redox Flow Batteries
    Chen, Qianru
    Lv, Yangguang
    Yuan, Zhizhang
    Li, Xianfeng
    Yu, Guihua
    Yang, Zhengjin
    Xu, Tongwen
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (09)
  • [2] Progress and prospects of pH-neutral aqueous organic redox flow batteries: Electrolytes and membranes
    Peng, Kang
    Tang, Gonggen
    Zhang, Chao
    Yang, Xian
    Zuo, Peipei
    Xiang, Zhanfeng
    Yao, Zhong
    Yang, Zhengjin
    Xu, Tongwen
    JOURNAL OF ENERGY CHEMISTRY, 2024, 96 : 89 - 109
  • [3] Progress and prospects of pH-neutral aqueous organic redox flow batteries:Electrolytes and membranes
    Kang Peng
    Gonggen Tang
    Chao Zhang
    Xian Yang
    Peipei Zuo
    Zhanfeng Xiang
    Zhong Yao
    Zhengjin Yang
    Tongwen Xu
    JournalofEnergyChemistry, 2024, 96 (09) : 89 - 109
  • [4] Ultramicroporous Troger's Base Framework Membranes for pH-Neutral Aqueous Organic Redox Flow Batteries
    Liu, Junmin
    Wu, Wenyi
    Zuo, Peipei
    Yang, Zhengjin
    Xu, Tongwen
    ACS MACRO LETTERS, 2024, 13 (03) : 328 - 334
  • [5] A quaternized anthraquinone derivative for pH-neutral aqueous organic redox flow batteries
    Xu, Lei
    Wang, Qianwei
    Guo, Dengfeng
    Xu, Juan
    Cao, Jianyu
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (23) : 11216 - 11221
  • [6] Ultra-microporous anion conductive membranes for crossover-free pH-neutral aqueous organic flow batteries
    Li, Hui
    Zhu, Qing
    Dong, Yu
    Zuo, Peipei
    Yang, Zhengjin
    Xu, Tongwen
    JOURNAL OF MEMBRANE SCIENCE, 2023, 668
  • [7] Naphthalene diimides (NDI) in highly stable pH-neutral aqueous organic redox flow batteries
    Wiberg, Cedrik
    Evenas, Lars
    Busch, Michael
    Ahlberg, Elisabet
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 896
  • [8] A highly soluble and readily accessible viologen negolyte for pH-neutral aqueous organic redox flow batteries
    Qu, Kangkang
    Liu, Yahua
    Hong, Die
    Shen, Zhaoxi
    Zhang, Xu
    Han, Xiaozhao
    Ran, Jin
    Yang, Zhengjin
    JOURNAL OF POWER SOURCES, 2024, 599
  • [9] A PEGylated Viologen for Crossover-Free and High-Capacity pH-Neutral Aqueous Organic Redox Flow Batteries
    Peng, Kang
    Sun, Pan
    Yang, Zhengjin
    Xu, Tongwen
    BATTERIES & SUPERCAPS, 2023, 6 (02)
  • [10] A highly water-soluble phenoxazine quaternary ammonium compound catholyte for pH-neutral aqueous organic redox flow batteries
    Qin, Mengna
    Wu, Guibao
    Zheng, Kai
    Yu, Xiaofei
    Xu, Juan
    Cao, Jianyu
    JOURNAL OF ENERGY STORAGE, 2024, 102