Input Relevance in Multi-Layer Perceptron for Fundraising

被引:0
作者
Barro, Diana [1 ]
Barzanti, Luca [2 ]
Corazza, Marco [1 ]
Nardon, Martina [1 ]
机构
[1] Ca Foscari Univ Venice, Dept Econ, Cannaregio 873, I-30121 Venice, Italy
[2] Univ Bologna, Dept Math, Piazza Porta San Donato 5, I-40126 Bologna, Italy
来源
MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF2024 | 2024年
关键词
Multi-Layer Perceptron; Input relevance; Garson's indicator; Fundraising Management;
D O I
10.1007/978-3-031-64273-9_6
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this contribution, we consider a Multi-Layer Perceptron (MLP) methodology for predicting specific gift features, particularly the count of donations and the gift amounts. Moreover, we use Garson's indicator to evaluate the relative importance of the input variables to the output(s) in the MLP model with the aim of enhancing the effectiveness of fundraising campaigns. In the discussed application, the Donors' behaviors are estimated using a simulated dataset that includes individual characteristics and information about donation history.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 8 条
  • [1] Barro D., 2023, Department of Economics Research Paper Series, V33
  • [2] Barzanti L., 2022, Mathematical and Statistical Methods for Actuarial Sciences and Finance. MAF 2022, P70
  • [3] Cagala T., 2021, CESifo Working Papers, V9037
  • [4] Farrokhvar L., 2021, PLoS ONE, V13, P1
  • [5] Garson G. D., 1991, AI Expert, V6, P46, DOI DOI 10.5555/129449.129452
  • [6] Horel E, 2020, J MACH LEARN RES, V21
  • [7] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [8] Mandel F, 2023, Arxiv, DOI arXiv:2301.11354