AI-powered trustable and explainable fall detection system using transfer learning

被引:2
作者
Patel, Aryan Nikul [1 ]
Murugan, Ramalingam [2 ]
Maddikunta, Praveen Kumar Reddy [2 ]
Yenduri, Gokul [3 ]
Jhaveri, Rutvij H. [4 ]
Zhu, Yaodong [5 ]
Gadekallu, Thippa Reddy [6 ,7 ,8 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, India
[2] Vellore Inst Technol, Sch Comp Sci Engn & Informat Syst, Vellore, India
[3] VIT AP Univ, Sch Comp Sci & Engn, Amaravati 522237, Andhra Pradesh, India
[4] Pandit Deendayal Energy Univ, Sch Technol, Gandhinagar, Gujarat, India
[5] Jiaxing Univ, Sch Informat Sci & Engn, Jiaxing 314001, Peoples R China
[6] Zhejiang A&F Univ, Coll Math & Comp Sci, Hangzhou 311300, Peoples R China
[7] Lovely Profess Univ, Div Res & Dev, Phagwara, India
[8] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
关键词
Artificial intelligence; Explainable artificial intelligence; Transfer learning; Deep neural networks; Fall detection; WEARABLE SENSORS; RECOGNITION; MACHINE;
D O I
10.1016/j.imavis.2024.105164
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accidental falls pose a significant public health challenge, especially among vulnerable populations. To address this issue, comprehensive research on fall detection and rescue systems is essential. Vision-based technologies, with their promising potential, offer an effective means to detect falls. This research paper presents a cuttingedge fall detection methodology aimed at enhancing individual safety and well-being. The proposed methodology utilizes deep neural networks, leveraging their capabilities to drive advancements in fall detection. To overcome data limitations and computational efficiency concerns, this study employ transfer learning by finetuning pre-trained models on large-scale image datasets for fall detection. This approach significantly enhances model performance, enabling better generalization and accuracy, especially in real-time applications with constrained resources. Notably, the methodology achieved an impressive test accuracy of 98.15%. Additionally, the incorporation of Explainable Artificial Intelligence (XAI) techniques is used to ensure transparent and trustworthy decision-making in fall detection using deep learning models, especially in critical healthcare contexts for vulnerable individuals. XAI provides valuable insights into complex model architectures and parameters, enabling a deeper understanding of fall identification patterns. To evaluate the effectiveness of this approach, a rigorous experimentation was conducted using a diverse dataset containing real-world fall and nonfall scenarios. The results demonstrate substantial improvements in both accuracy and interpretability, confirming the superiority of this method over conventional fall detection approaches.
引用
收藏
页数:19
相关论文
共 50 条
[41]   Using AI-Powered video feedback to improve ergonomics: An analog experiment [J].
Luna, Williams A. Espericueta ;
Wu, Yuetong J. ;
Luo, Yue ;
Hu, Boyi ;
Gravina, Nicole .
JOURNAL OF ORGANIZATIONAL BEHAVIOR MANAGEMENT, 2025,
[42]   Demystifying Defects: Federated Learning and Explainable AI for Semiconductor Fault Detection [J].
Patel, Tanish ;
Murugan, Ramalingam ;
Yenduri, Gokul ;
Jhaveri, Rutvij H. ;
Snoussi, Hichem ;
Gaber, Tarek .
IEEE ACCESS, 2024, 12 :116987-117007
[43]   Enhancing transparency and trust in AI-powered manufacturing: A survey of explainable AI (XAI) applications in smart manufacturing in the era of industry 4.0/5.0 [J].
Nikiforidis, Konstantinos ;
Kyrtsoglou, Alkiviadis ;
Kotsiopoulos, Thanasis ;
Vafeiadis, Thanasis ;
Nizamis, Alexandros ;
Ioannidis, Dimosthenis ;
Votis, Konstantinos ;
Tzovaras, Dimitrios ;
Sarigiannidis, Panagiotis .
ICT EXPRESS, 2025, 11 (01) :135-148
[44]   AI-powered optimization and numerical techniques for nanofluid heat transfer systems-a review [J].
Mohsin Raza ;
Muazzam Faiz ;
Waqar U. I. Hassan ;
Muzamil Abbas ;
Jawad Raza ;
Zahid Kumail ;
Tahsin Nawaz ;
Sania Shabir ;
Ali Jan ;
Feng-Chen Li .
Multiscale and Multidisciplinary Modeling, Experiments and Design, 2024, 8 (7)
[45]   An Explainable Artificial Intelligence Integrated System for Automatic Detection of Dengue From Images of Blood Smears Using Transfer Learning [J].
Mayrose, Hilda ;
Sampathila, Niranjana ;
Bairy, G. Muralidhar ;
Nayak, Tushar ;
Belurkar, Sushma ;
Saravu, Kavitha .
IEEE ACCESS, 2024, 12 :41750-41762
[46]   Implementation of a Smarter Herbal Medication Delivery System Employing an AI-Powered Chatbot [J].
Vera, Maria Concepcion S. ;
Palaoag, Thelma D. .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) :500-508
[47]   Developing an AI-Powered Algorithm for Automated Detection and Classification of Dental Caries from Intraoral Radiographs: A Machine Learning Approach [J].
Haider, Mohammad .
JOURNAL OF PHARMACY AND BIOALLIED SCIENCES, 2024, 16 :S3089-S3091
[48]   AI-powered language learning: Developing the chatGPT usage scale for foreign language learners [J].
Cobanogullari, Ferdiye ;
Ozbek, Ozge .
EDUCATION AND INFORMATION TECHNOLOGIES, 2025, :12517-12534
[49]   Amalgamation of Transfer Learning and Explainable AI for Internet of Medical Things [J].
Murugan R. ;
Paliwal M. ;
Patibandla R.S.M.L. ;
Shah P. ;
Balaga T.R. ;
Gurrammagari D.R. ;
Singaravelu P. ;
Yenduri G. ;
Jhaveri R. .
Recent Advances in Computer Science and Communications, 2024, 17 (04) :40-53
[50]   TL-FALL: CONTACTLESS INDOOR FALL DETECTION USING TRANSFER LEARNING FROM A PRETRAINED MODEL [J].
Sadreazami, Hamidreza ;
Bolic, Miodrag ;
Rajan, Sreeraman .
2019 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2019,