On critical Ambrosetti-Prodi type problems involving mixed operator

被引:1
作者
Sharma, Lovelesh [1 ]
Mukherjee, Tuhina [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342030, Rajasthan, India
关键词
Mixed local-nonlocal operators; Ambrosetti-Prodi problem; Variational methods; Existence and multiplicity of solutions; EXISTENCE; DISPERSAL;
D O I
10.1007/s41808-024-00298-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article contains the study of the following problem with critical growth that involves the classical Laplacian and fractional Laplacian operators precisely {Lu=lambda u + u(+)(2)*(-1) + (t(phi 1)+h) in Omega, u = 0 in R-n \ Omega, where Omega subset of R-n, n >= 3 is a bounded domain with smooth boundary partial derivative Omega, u(+) = max{u, 0}, lambda > 0 is a real parameter, 2* = 2n/n-2 and L = -Delta+(-Delta)(s), for s is an element of(0,1). Here phi(1) is the first eigenfunction of L with homogeneous Dirichlet boundary condition, t is an element of R and h is an element of L-infinity(Omega) satisfies integral(Omega)h(phi 1) dx = 0. We establish existence and multiplicity results for the above problem, based on different ranges of the spectrum of L, using the Linking Theorem.
引用
收藏
页码:1187 / 1216
页数:30
相关论文
共 50 条
  • [21] A singular periodic Ambrosetti-Prodi problem of Rayleigh equations without coercivity conditions
    Yu, Xingchen
    Lu, Shiping
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (05)
  • [22] A one side superlinear Ambrosetti-Prodi problem for the Dirichlet p-laplacian
    Arias, Margarita
    Cuesta, Mabel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 499 - 507
  • [23] Solvability of functional third-order problems of Ambrosetti-Prodi-type
    Minhos, Feliz
    Oliveira, Nuno
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 139
  • [24] AMBROSETTI-PRODI PERIODIC PROBLEM OF SINGULAR φ-LAPLACIAN RAYLEIGH EQUATIONS: THEORY AND NUMERICAL BIFURCATION ANALYSIS
    Cheng, Zhibo
    Qian, Yuting
    Yuan, Qigang
    Kong, Ci
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, : 3458 - 3482
  • [25] Bifurcation Results for Periodic Third-Order Ambrosetti-Prodi-Type Problems
    Minhos, Feliz
    Oliveira, Nuno
    AXIOMS, 2022, 11 (08)
  • [26] Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity
    Autuori, Giuseppina
    Fiscella, Alessio
    Pucci, Patrizia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 : 699 - 714
  • [27] QUASILINEAR PROBLEMS INVOLVING CHANGING-SIGN NONLINEARITIES WITHOUT AN AMBROSETTI-RABINOWITZ-TYPE CONDITION
    Iturriaga, Leonelo
    Souto, Marco A.
    Ubilla, Pedro
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) : 755 - 762
  • [28] Robin Problem Involving the p(x)-Laplacian Operator Without Ambrosetti-Rabinowizt Condition
    El Ahmadi, Mahmoud
    Ayoujil, Abdesslem
    Berrajaa, Mohammed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 15 - 15
  • [29] A nonlocal type problem involving a mixed local and nonlocal operator
    Biroud, Kheireddine
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (01) : 63 - 78
  • [30] Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
    Alves, Claudianor O.
    Ourraoui, Anass
    Pimenta, Marcos T. O.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 308 : 545 - 574