On critical Ambrosetti-Prodi type problems involving mixed operator

被引:1
|
作者
Sharma, Lovelesh [1 ]
Mukherjee, Tuhina [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342030, Rajasthan, India
关键词
Mixed local-nonlocal operators; Ambrosetti-Prodi problem; Variational methods; Existence and multiplicity of solutions; EXISTENCE; DISPERSAL;
D O I
10.1007/s41808-024-00298-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article contains the study of the following problem with critical growth that involves the classical Laplacian and fractional Laplacian operators precisely {Lu=lambda u + u(+)(2)*(-1) + (t(phi 1)+h) in Omega, u = 0 in R-n \ Omega, where Omega subset of R-n, n >= 3 is a bounded domain with smooth boundary partial derivative Omega, u(+) = max{u, 0}, lambda > 0 is a real parameter, 2* = 2n/n-2 and L = -Delta+(-Delta)(s), for s is an element of(0,1). Here phi(1) is the first eigenfunction of L with homogeneous Dirichlet boundary condition, t is an element of R and h is an element of L-infinity(Omega) satisfies integral(Omega)h(phi 1) dx = 0. We establish existence and multiplicity results for the above problem, based on different ranges of the spectrum of L, using the Linking Theorem.
引用
收藏
页码:1187 / 1216
页数:30
相关论文
共 50 条
  • [1] An Ambrosetti-Prodi type result for fractional spectral problems
    Ambrosio, Vincenzo
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (03) : 412 - 429
  • [2] The critical fractional Ambrosetti-Prodi problem
    Ambrosio, Vincenzo
    Isernia, Teresa
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) : 1107 - 1132
  • [3] An Ambrosetti-Prodi type result for integral equations involving dispersal operators
    Lima, Natan de Assis
    Souto, Marco A. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (02)
  • [4] Critical Concave Convex Ambrosetti-Prodi Type Problems for Fractional p-Laplacian
    Bueno, H. P.
    Huerto Caqui, E.
    Miyagaki, O. H.
    Pereira, F. R.
    ADVANCED NONLINEAR STUDIES, 2020, 20 (04) : 847 - 865
  • [5] Ambrosetti-Prodi problems for the Robin (p, q)-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Jian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [6] Existence and multiplicity results for a critical superlinear fractional Ambrosetti-Prodi type problem
    Fu, Peiyuan
    Xia, Aliang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 120
  • [7] AMBROSETTI-PRODI TYPE RESULTS FOR A NEUMANN PROBLEM WITH A MEAN CURVATURE OPERATOR IN MINKOWSKI SPACES
    Chen, Tianlan
    Duan, Lei
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (05) : 1627 - 1635
  • [8] Sublinear and superlinear Ambrosetti-Prodi problems for the Dirichlet p-Laplacian
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 263 - 280
  • [9] MULTIPLICITY RESULTS FOR CRITICAL FRACTIONAL AMBROSETTI-PRODI TYPE SYSTEM WITH NONLINEARITIES INTERACTING WITH THE SPECTRUM
    Caqui, Eduardo h.
    Lima, Sandra m. de s.
    Pereira, Fabio r.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 (19)
  • [10] Ambrosetti-Prodi Type Results for Dirichlet Problems of Fractional Laplacian-Like Operators
    Biswas, Anup
    Lorinczi, Jozsef
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (03)