Integration of Deep Sequence Learning-Based Virtual GPS Model and EKF for AUV Navigation

被引:2
|
作者
Lv, Peng-Fei [1 ]
Lv, Jun-Yi [2 ]
Hong, Zhi-Chao [1 ,3 ]
Xu, Li-Xin [1 ,3 ]
机构
[1] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang 212003, Peoples R China
[2] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
[3] Jiangsu Marine Technol Innovat Ctr, Nantong 226199, Peoples R China
关键词
autonomous underwater vehicle; underwater navigation; virtual GPS model; deep sequence learning; extended Kalman filter; SYSTEM; DESIGN;
D O I
10.3390/drones8090441
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
To address the issue of increasing navigation errors in low-cost autonomous underwater vehicles (AUVs) operating without assisted positioning underwater, this paper proposes a Virtual GPS Model (VGPSM) based on deep sequence learning. This model is integrated with an Extended Kalman Filter (EKF) to provide a high-precision navigation solution for AUVs. The VGPSM leverages the time-series characteristics of data from sensors such as the Attitude and Heading Reference System (AHRS) and the Doppler Velocity Log (DVL) while the AUV is on the surface. It learns the relationship between these sensor data and GPS data by utilizing a hybrid model of Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (Bi-LSTM), which are well-suited for processing and predicting time-series data. This approach constructs a virtual GPS model that generates virtual GPS displacements updated at the same frequency as the real GPS data. When the AUV navigates underwater, the virtual GPS displacements generated using the VGPSM in real-time are used as measurements to assist the EKF in state estimation, thereby enhancing the accuracy and robustness of underwater navigation. The effectiveness of the proposed method is validated through a series of experiments under various conditions. The experimental results demonstrate that the proposed method significantly reduces cumulative errors, with navigation accuracy improvements ranging from 29.2% to 69.56% compared to the standard EKF, indicating strong adaptability and robustness.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A Position Correction Model for AUV Navigation with Sequential Learning-Assisted State Estimation
    Zhang, Xin
    Qiu, Yiping
    Ohya, Akihisa
    Yorozu, Ayanori
    He, Bo
    2023 IEEE UNDERWATER TECHNOLOGY, UT, 2023,
  • [32] Deep Learning-Based Model for Detection of Brinjal Weed in the Era of Precision Agriculture
    Patel, Jigna
    Ruparelia, Anand
    Tanwar, Sudeep
    Alqahtani, Fayez
    Tolba, Amr
    Sharma, Ravi
    Raboaca, Maria Simona
    Neagu, Bogdan Constantin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (01): : 1281 - 1301
  • [33] A Hybrid Deep Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks
    Garg, Sahil
    Kaur, Kuljeet
    Kumar, Neeraj
    Kaddoum, Georges
    Zomaya, Albert Y.
    Ranjan, Rajiv
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2019, 16 (03): : 924 - 935
  • [34] Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks
    Ullah, Imtiaz
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 (09): : 103906 - 103926
  • [35] Deep learning-based segmentation model for permeable concrete meso-structures
    Chen, De
    Li, Yukun
    Tao, Jiaxing
    Li, Yuchen
    Zhang, Shilong
    Shan, Xuehui
    Wang, Tingting
    Qiao, Zhi
    Zhao, Rui
    Fan, Xiaoqiang
    Zhou, Zhongrong
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (23) : 3626 - 3645
  • [36] DEEP REINFORCEMENT LEARNING-BASED IRRIGATION SCHEDULING
    Yang, Y.
    Hu, J.
    Porter, D.
    Marek, T.
    Heflin, K.
    Kong, H.
    Sun, L.
    TRANSACTIONS OF THE ASABE, 2020, 63 (03) : 549 - 556
  • [37] Deep Learning-Based Multiparametric Predictions for IoT
    Ateeq, Muhammad
    Afzal, Muhammad Khalil
    Naeem, Muhammad
    Shafiq, Muhammad
    Choi, Jin-Ghoo
    SUSTAINABILITY, 2020, 12 (18)
  • [38] Deep learning-based structural health monitoring
    Cha, Young-Jin
    Ali, Rahmat
    Lewis, John
    Buyukozturk, Oral
    AUTOMATION IN CONSTRUCTION, 2024, 161
  • [39] Explaining Deep Learning-Based Driver Models
    Lorente, Maria Paz Sesmero
    Lopez, Elena Magan
    Florez, Laura Alvarez
    Espino, Agapito Ledezma
    Martinez, Jose Antonio Iglesias
    de Miguel, Araceli Sanchis
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [40] Learning-Based Navigation and Collision Avoidance Through Reinforcement for UAVs
    Azzam, Rana
    Chehadeh, Mohamad
    Hay, Oussama Abdul
    Humais, Muhammad Ahmed
    Boiko, Igor
    Zweiri, Yahya
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (03) : 2614 - 2628