SCMeTA: a pipeline for single-cell metabolic analysis data processing

被引:1
|
作者
Pan, Xingyu [1 ]
Pan, Siyuan [1 ]
Du, Murong [1 ]
Yang, Jinlei [1 ]
Yao, Huan [2 ]
Zhang, Xinrong [1 ]
Zhang, Sichun [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Natl Inst Metrol China, Div Chem Metrol & Analyt Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
MASS-SPECTROMETRY;
D O I
10.1093/bioinformatics/btae545
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To address the challenges in single-cell metabolomics (SCM) research, we have developed an open-source Python-based modular library, named SCMeTA, for SCM data processing. We designed standardized pipeline and inter-container communication format and have developed modular components to adapt to the diverse needs of SCM studies. The validation was carried out on multiple SCM experiment data. The results demonstrated significant improvements in batch effects, accuracy of results, metabolic extraction rate, cell matching rate, as well as processing speed. This library is of great significance in advancing the practical application of SCM analysis and makes a foundation for wide-scale adoption in biological studies.Availability and implementation SCMeTA is freely available on https://github.com/SCMeTA/SCMeTA and https://doi.org/10.5281/zenodo.13569643.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Processing, visualising and reconstructing network models from single-cell data
    Woodhouse, Steven
    Moignard, Victoria
    Goettgens, Berthold
    Fisher, Jasmin
    IMMUNOLOGY AND CELL BIOLOGY, 2016, 94 (03): : 256 - 265
  • [33] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    Biochemistry (Moscow), 2023, 88 : 231 - 252
  • [34] Interactive single-cell data analysis using Cellar
    Euxhen Hasanaj
    Jingtao Wang
    Arjun Sarathi
    Jun Ding
    Ziv Bar-Joseph
    Nature Communications, 13
  • [35] Single-cell multiomics: technologies and data analysis methods
    Jeongwoo Lee
    Do Young Hyeon
    Daehee Hwang
    Experimental & Molecular Medicine, 2020, 52 : 1428 - 1442
  • [36] An introduction to representation learning for single-cell data analysis
    Gunawan, Ihuan
    Vafaee, Fatemeh
    Meijering, Erik
    Lock, John George
    CELL REPORTS METHODS, 2023, 3 (08):
  • [37] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252
  • [38] Interactive single-cell data analysis using Cellar
    Hasanaj, Euxhen
    Wang, Jingtao
    Sarathi, Arjun
    Ding, Jun
    Bar-Joseph, Ziv
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [39] The Current State of Single-Cell Proteomics Data Analysis
    Vanderaa, Christophe
    Gatto, Laurent
    CURRENT PROTOCOLS, 2023, 3 (01):
  • [40] BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
    Vallejos, Catalina A.
    Marioni, John C.
    Richardson, Sylvia
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)