SCMeTA: a pipeline for single-cell metabolic analysis data processing

被引:1
|
作者
Pan, Xingyu [1 ]
Pan, Siyuan [1 ]
Du, Murong [1 ]
Yang, Jinlei [1 ]
Yao, Huan [2 ]
Zhang, Xinrong [1 ]
Zhang, Sichun [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Natl Inst Metrol China, Div Chem Metrol & Analyt Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
MASS-SPECTROMETRY;
D O I
10.1093/bioinformatics/btae545
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To address the challenges in single-cell metabolomics (SCM) research, we have developed an open-source Python-based modular library, named SCMeTA, for SCM data processing. We designed standardized pipeline and inter-container communication format and have developed modular components to adapt to the diverse needs of SCM studies. The validation was carried out on multiple SCM experiment data. The results demonstrated significant improvements in batch effects, accuracy of results, metabolic extraction rate, cell matching rate, as well as processing speed. This library is of great significance in advancing the practical application of SCM analysis and makes a foundation for wide-scale adoption in biological studies.Availability and implementation SCMeTA is freely available on https://github.com/SCMeTA/SCMeTA and https://doi.org/10.5281/zenodo.13569643.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] ScRNAPip: A systematic and dynamic pipeline for single-cell RNA sequencing analysis
    Xu, Limin
    Zhang, Jing
    He, Yiqian
    Yang, Qianqian
    Mu, Tianhao
    Guo, Qiushi
    Li, Yingqiang
    Tong, Tian
    Chen, Shifu
    Ye, Richard D.
    IMETA, 2023, 2 (04):
  • [22] Recent advancements in single-cell metabolic analysis for pharmacological research
    Hou, Ying
    Yao, Hongren
    Lin, Jin -Ming
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (10) : 1102 - 1116
  • [23] Single-cell analysis revealing the metabolic landscape of prostate cancer
    Wang, Jing
    Ding, He-Kang
    Xu, Han-Jiang
    Hu, De-Kai
    Hankey, William
    Chen, Li
    Xiao, Jun
    Liang, Chao-Zhao
    Zhao, Bing
    Xu, Ling-Fan
    ASIAN JOURNAL OF ANDROLOGY, 2024, 26 (05): : 451 - +
  • [24] MethylStar: A fast and robust pre-processing pipeline for bulk or single-cell whole-genome bisulfite sequencing data
    Yadollah Shahryary
    Rashmi R. Hazarika
    Frank Johannes
    BMC Genomics, 21
  • [25] MethylStar: A fast and robust pre-processing pipeline for bulk or single-cell whole-genome bisulfite sequencing data
    Shahryary, Yadollah
    Hazarika, Rashmi R.
    Johannes, Frank
    BMC GENOMICS, 2020, 21 (01)
  • [26] Split Pool Ligation-based Single-cell Transcriptome sequencing (SPLiT-seq) data processing pipeline comparison
    Kuijpers, Lucas
    Hornung, Bastian
    van den Hout-van Vroonhoven, Mirjam C. G. N.
    van IJcken, Wilfred F. J.
    Grosveld, Frank
    Mulugeta, Eskeatnaf
    BMC GENOMICS, 2024, 25 (01)
  • [27] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244
  • [28] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [29] SingleScan: a comprehensive resource for single-cell sequencing data processing and mining
    Wang, Kun
    Zhang, Xiao
    Cheng, Hansen
    Ma, Wenhao
    Bao, Guangchao
    Dong, Liting
    Gou, Yixiong
    Yang, Jian
    Cai, Haoyang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [30] SingleScan: a comprehensive resource for single-cell sequencing data processing and mining
    Kun Wang
    Xiao Zhang
    Hansen Cheng
    Wenhao Ma
    Guangchao Bao
    Liting Dong
    Yixiong Gou
    Jian Yang
    Haoyang Cai
    BMC Bioinformatics, 24