SCMeTA: a pipeline for single-cell metabolic analysis data processing

被引:1
|
作者
Pan, Xingyu [1 ]
Pan, Siyuan [1 ]
Du, Murong [1 ]
Yang, Jinlei [1 ]
Yao, Huan [2 ]
Zhang, Xinrong [1 ]
Zhang, Sichun [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Natl Inst Metrol China, Div Chem Metrol & Analyt Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
MASS-SPECTROMETRY;
D O I
10.1093/bioinformatics/btae545
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To address the challenges in single-cell metabolomics (SCM) research, we have developed an open-source Python-based modular library, named SCMeTA, for SCM data processing. We designed standardized pipeline and inter-container communication format and have developed modular components to adapt to the diverse needs of SCM studies. The validation was carried out on multiple SCM experiment data. The results demonstrated significant improvements in batch effects, accuracy of results, metabolic extraction rate, cell matching rate, as well as processing speed. This library is of great significance in advancing the practical application of SCM analysis and makes a foundation for wide-scale adoption in biological studies.Availability and implementation SCMeTA is freely available on https://github.com/SCMeTA/SCMeTA and https://doi.org/10.5281/zenodo.13569643.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A flexible cross-platform single-cell data processing pipeline
    Kai Battenberg
    S. Thomas Kelly
    Radu Abu Ras
    Nicola A. Hetherington
    Makoto Hayashi
    Aki Minoda
    Nature Communications, 13
  • [2] A flexible cross-platform single-cell data processing pipeline
    Battenberg, Kai
    Kelly, S. Thomas
    Ras, Radu Abu
    Hetherington, Nicola A.
    Hayashi, Makoto
    Minoda, Aki
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] SCREE: a comprehensive pipeline for single-cell multi-modal CRISPR screen data processing and analysis
    Wei, Hailin
    Han, Tong
    Li, Taiwen
    Wu, Qiu
    Wang, Chenfei
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [4] Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis
    Curion, Fabiola
    Rich-Griffin, Charlotte
    Agarwal, Devika
    Ouologuem, Sarah
    Rue-Albrecht, Kevin
    May, Lilly
    Garcia, Giulia E. L.
    Heumos, Lukas
    Thomas, Tom
    Lason, Wojciech
    Sims, David
    Theis, Fabian J.
    Dendrou, Calliope A.
    GENOME BIOLOGY, 2024, 25 (01):
  • [5] ScSmOP: a universal computational pipeline for single-cell single-molecule multiomics data analysis
    Jing, Kai
    Xu, Yewen
    Yang, Yang
    Yin, Pengfei
    Ning, Duo
    Huang, Guangyu
    Deng, Yuqing
    Chen, Gengzhan
    Li, Guoliang
    Tian, Simon Zhongyuan
    Zheng, Meizhen
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [6] scTyper: a comprehensive pipeline for the cell typing analysis of single-cell RNA-seq data
    Choi, Ji-Hye
    In Kim, Hye
    Woo, Hyun Goo
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [7] scTyper: a comprehensive pipeline for the cell typing analysis of single-cell RNA-seq data
    Ji-Hye Choi
    Hye In Kim
    Hyun Goo Woo
    BMC Bioinformatics, 21
  • [8] WebAtlas pipeline for integrated single-cell and spatial transcriptomic data
    Li, Tong
    Horsfall, David
    Basurto-Lozada, Daniela
    Roberts, Kenny
    Prete, Martin
    Lawrence, John E. G.
    He, Peng
    Tuck, Elisabeth
    Moore, Josh
    Yoldas, Aybuke Kupcu
    Babalola, Kolawole
    Hartley, Matthew
    Ghazanfar, Shila
    Teichmann, Sarah A.
    Haniffa, Muzlifah
    Bayraktar, Omer Ali
    NATURE METHODS, 2025, 22 (01) : 3 - 5
  • [9] Deciphering Metabolic Heterogeneity by Single-Cell Analysis
    Evers, Tom M. J.
    Hochane, Mazene
    Tans, Sander J.
    Heeren, Ron M. A.
    Semrau, Stefan
    Nemes, Peter
    Mashaghi, Alireza
    ANALYTICAL CHEMISTRY, 2019, 91 (21) : 13314 - 13323
  • [10] An optimised tissue disaggregation and data processing pipeline for characterising fibroblast phenotypes using single-cell RNA sequencing
    Waise, Sara
    Parker, Rachel
    Rose-Zerilli, Matthew J. J.
    Layfield, David M.
    Wood, Oliver
    West, Jonathan
    Ottensmeier, Christian H.
    Thomas, Gareth J.
    Hanley, Christopher J.
    SCIENTIFIC REPORTS, 2019, 9 (1)