Fluid/Material Coupled Numerical Simulation of a Bubble Collapse Near a Wall for Laser Cavitation Peening

被引:0
|
作者
Iga, Yuka [1 ]
Kuji, Chieko [2 ]
Sasaki, Hirotoshi [3 ]
Soyama, Hitoshi [2 ]
机构
[1] Tohoku Univ, Inst Fluid Sci, 2-2-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Dept Finemech, 6-6-01 Aoba Ku, Sendai, Miyagi 9808579, Japan
[3] Japan Atom Power Co, Tokai Head Off, 1-1 Shirakata, Tokai, Ibaraki 3191198, Japan
来源
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ADVANCED SURFACE ENHANCEMENT, INCASE 2023 | 2024年
关键词
Cavitation; Bubble; Numerical simulation; Laser; Peening; NEIGHBORHOOD;
D O I
10.1007/978-981-99-8643-9_37
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An impact of a bubble induced by a submerged pulsed laser is utilized for improvement of fatigue strength of metallic materials. As the bubble induced by the pulsed laser behaves like a cavitation bubble, the laser induced bubble is called as "laser cavitation". The mechanical surface treatment using the laser cavitation impact is named as "laser cavitation peening". At laser cavitation peening, the impact induced by laser cavitation collapse strongly depends on the bubble geometry. There are two typical mode at the bubble collapse. One mode is "microjet mode", at which bubble develops near the target and is collapsed with generating a microjet in the bubble. The other mode is "hemispherical mode", at which a hemispherical bubble develops on the target surface and is collapsed on the surface. As the bubble collapse of microjet mode is interesting phenomenon, a lot of researchers investigate "microjet mode". However, impact induced by "hemispherical mode" is significantly larger than that of "microjet mode". In the present paper, to optimize laser cavitation peening condition, a fluid/material coupled numerical simulation of a bubble collapse near a wall was carried out changing with standoff distance from wall. It was revealed that the equivalent stress induced by hemispherical mode was larger than that of microjet mode.
引用
收藏
页码:309 / 314
页数:6
相关论文
共 50 条
  • [1] Experimental and numerical investigations of the collapse of a laser-induced cavitation bubble near a solid wall
    Jia-yun Zhang
    Yu-xin Du
    Jia-qi Liu
    Yu-rong Sun
    Zhi-feng Yao
    Qiang Zhong
    Journal of Hydrodynamics, 2022, 34 : 189 - 199
  • [2] Experimental and numerical investigations of the collapse of a laser-induced cavitation bubble near a solid wall
    Zhang, Jia-yun
    Du, Yu-xin
    Liu, Jia-qi
    Sun, Yu-rong
    Yao, Zhi-feng
    Zhong, Qiang
    JOURNAL OF HYDRODYNAMICS, 2022, 34 (02) : 189 - 199
  • [3] Numerical study on stress in a solid wall caused by the collapse of a cavitation bubble cloud in hydraulic fluid
    Okita, Kohei
    Miyamoto, Yuusuke
    Furukawa, Teruyuki
    Takagi, Shu
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2022, 150
  • [4] Numerical simulation of cavitation bubble collapse within a droplet
    Lu Ming
    Ning Zhi
    Sun Chunhua
    COMPUTERS & FLUIDS, 2017, 152 : 157 - 163
  • [5] Cavitation bubble collapse near a rigid wall with an oil layer
    Ohl, Siew-Wan
    Reese, Hendrik
    Ohl, Claus -Dieter
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 174
  • [6] Numerical investigation on the collapse of a bubble cluster near a solid wall
    Zhang, Lingxin
    Zhang, Jing
    Deng, Jian
    PHYSICAL REVIEW E, 2019, 99 (04)
  • [7] Cavitation Bubble Collapse Near a Heated Wall and Its Effect on the Heat Transfer
    Liu, Bin
    Cai, Jun
    Huai, Xiulan
    Li, Fengchao
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [8] Study of Cavitation Bubble Collapse near a Wall by the Modified Lattice Boltzmann Method
    Mao, Yunfei
    Peng, Yong
    Zhang, Jianmin
    WATER, 2018, 10 (10)
  • [9] Fluid-structure modelling for material deformation during cavitation bubble collapse
    Sarkar, Prasanta
    Ghigliotti, Giovanni
    Franc, Jean-Pierre
    Fivel, Marc
    JOURNAL OF FLUIDS AND STRUCTURES, 2021, 106
  • [10] Pressure characteristics of bubble collapse near a rigid wall in compressible fluid
    Long-kan, Wang
    Zhi-fan, Zhang
    Shi-ping, Wang
    APPLIED OCEAN RESEARCH, 2016, 59 : 183 - 192