A Comprehensive Analysis of Deep Learning Frameworks for Gastrointestinal Tract Image Segmentation

被引:0
|
作者
Batra, Shivam [1 ]
Kamath, Varun [2 ]
Priyadarshini, R. [2 ]
Titiya, Prasham [2 ]
Ramadasan, Manigandan [2 ]
Naik, Ronit [2 ]
机构
[1] JPMorgan Chase & Co, Bengaluru, India
[2] Vellore Inst Technol Chennai, Sch Comp Sci & Engn, Chennai, India
来源
2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024 | 2024年
关键词
Image segmentation; Gastrointestinal endoscopy; Computer Vision; Deep learning;
D O I
10.1109/ACCAI61061.2024.10601740
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A critical aspect of medical imaging for accurate diagnosis and treatment of gastrointestinal disorders. This study addresses the importance of this topic and aims to fill the existing research gap. By employing four distinct models, including CNN, UNet, LinkNet, and SegNet, we achieved exceptional results with 99% accuracy and an IoU score of 0.95. Our findings significantly contribute to the field of image analysis and segmentation, improving the accuracy and efficiency of gastrointestinal endoscopy image segmentation. This research has the potential to improve the uses of medical imaging, leading to more precise diagnosis and better patient outcomes. Overall, this work contributes to the progress of gastrointestinal endoscopy image segmentation, with potential applications to the medical imaging domain.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Deep learning implementation of image segmentation in agricultural applications: a comprehensive review
    Lei, Lian
    Yang, Qiliang
    Yang, Ling
    Shen, Tao
    Wang, Ruoxi
    Fu, Chengbiao
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (06)
  • [2] A comprehensive review of deep learning for medical image segmentation
    Xia, Qingling
    Zheng, Hong
    Zou, Haonan
    Luo, Dinghao
    Tang, Hongan
    Li, Lingxiao
    Jiang, Bin
    NEUROCOMPUTING, 2025, 613
  • [3] Segmentation-based Deep Learning Fundus Image Analysis
    Wu, Qian
    Cheddad, Abbas
    2019 NINTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2019,
  • [4] Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches
    Xu, Yan
    Quan, Rixiang
    Xu, Weiting
    Huang, Yi
    Chen, Xiaolong
    Liu, Fengyuan
    BIOENGINEERING-BASEL, 2024, 11 (10):
  • [5] Integration of Deep Learning and Image Segmentation in Computational Modeling for Improved Biospeckle Image Analysis
    Hatem S. A. Hamatta
    Ch. L. N. Deepika
    Gaith Rjoub
    Sofian Kassaymeh
    R. Manikandan
    Sanjay Kumar Suman
    L. Bhagyalakshmi
    SN Computer Science, 6 (4)
  • [6] Image Segmentation Using Deep Learning: A Survey
    Minaee, Shervin
    Boykov, Yuri Y.
    Porikli, Fatih
    Plaza, Antonio J.
    Kehtarnavaz, Nasser
    Terzopoulos, Demetri
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3523 - 3542
  • [7] Image Segmentation of a Sewer Based on Deep Learning
    He, Min
    Zhao, Qinnan
    Gao, Huanhuan
    Zhang, Xinying
    Zhao, Qin
    SUSTAINABILITY, 2022, 14 (11)
  • [8] Bacterial Behaviour Analysis Through Image Segmentation Using Deep Learning Approaches
    Rahman, Afroza
    Rahman, Miraz
    Ahad, Md Atiqur Rahman
    ARTIFICIAL INTELLIGENCE IN HEALTHCARE, PT II, AIIH 2024, 2024, 14976 : 172 - 185
  • [9] A Comprehensive Survey of Deep Learning for Image Captioning
    Hossain, Md Zakir
    Sohel, Ferdous
    Shiratuddin, Mohd Fairuz
    Laga, Hamid
    ACM COMPUTING SURVEYS, 2019, 51 (06)
  • [10] A Survey of Wound Image Analysis Using Deep Learning: Classification, Detection, and Segmentation
    Zhang, Ruyi
    Tian, Dingcheng
    Xu, Dechao
    Qian, Wei
    Yao, Yudong
    IEEE ACCESS, 2022, 10 : 79502 - 79515