Kernel density estimation for a stochastic process with values in a Riemannian manifold

被引:0
|
作者
Isman, Mohamed Abdillahi [1 ,2 ]
Nefzi, Wiem [3 ]
Mbaye, Papa [1 ]
Khardani, Salah [3 ]
Yao, Anne-Francoise [1 ,4 ]
机构
[1] Univ Clermont Auvergne, Lab Math Blaise Pascal, Aubiere, France
[2] Univ Djibouti, Fac IUT I, Dept Stat, Balbala, Djibouti
[3] Univ El Manar, Fac Sci Tunis, Lab Modelisat Math Stat & Anal Stochast M2SAS, Tunis, Tunisia
[4] Ecole Polytech, Ctr Math Appl, Paris, France
关键词
Kernel density estimator; Riemannian manifolds; mixing condition; stochastic process; central limit theorem;
D O I
10.1080/10485252.2024.2382442
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is related to the issue of the density estimation of observations with values in a Riemannian submanifold. In this context, Henry and Rodriguez ((2009), 'Kernel Density Estimation on Riemannian Manifolds: Asymptotic Results', Journal of Mathematical Imaging and Vision, 34, 235-239) proposed a kernel density estimator for independent data. We investigate here the behaviour of Pelletier's estimator when the observations are generated from a strictly stationary alpha-mixing process with values in this submanifold. Our study encompasses both pointwise and uniform analyses of the weak and strong consistency of the estimator. Specifically, we give the rate of convergence in terms of mean square error, probability, and almost sure convergence (a.s.). We also give a central-limit theorem and illustrate our proposal through some simulations and a real data application.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] STOCHASTIC MEAN-VALUE ON A RIEMANNIAN MANIFOLD
    PINSKY, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (23): : 991 - 994
  • [22] Kernel methods for manifold estimation
    Schölkopf, B
    COMPSTAT 2004: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2004, : 441 - 452
  • [23] ISOTROPIC TRANSPORT PROCESS ON A RIEMANNIAN MANIFOLD
    PINSKY, MA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 218 (APR) : 353 - 360
  • [24] Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold
    Feng, Qi
    Li, Wuchen
    ENTROPY, 2023, 25 (05)
  • [25] Kernel Density Estimation for Stochastic Modeling of PV Power Output
    Trashchenkov, Sergei
    Pimentel, Sergio Pires
    Astapov, Victor
    Annuk, Andres
    Marra, Enes Goncalves
    2018 7TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2018, : 1179 - 1183
  • [26] Automatic image annotation by semi-supervised manifold kernel density estimation
    Ji, Ping
    Zhao, Na
    Hao, Shijie
    Jiang, Jianguo
    INFORMATION SCIENCES, 2014, 281 : 648 - 660
  • [27] Estimation of the Euler method error on a Riemannian manifold
    Bielecki, A
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (11): : 757 - 763
  • [28] Constructing a Brownian sheet with values in a compact Riemannian manifold
    Shamarova, ÉY
    MATHEMATICAL NOTES, 2004, 76 (3-4) : 590 - 596
  • [29] Constructing a Brownian Sheet with Values in a Compact Riemannian Manifold
    É. Yu. Shamarova
    Mathematical Notes, 2004, 76 : 590 - 596
  • [30] Small time asymptotics of the entropy of the heat kernel on a Riemannian manifold
    Menkovski, Vlado
    Portegies, Jacobus W.
    Ravelonanosy, Mahefa Ratsisetraina
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 71