Kernel density estimation for a stochastic process with values in a Riemannian manifold

被引:0
|
作者
Isman, Mohamed Abdillahi [1 ,2 ]
Nefzi, Wiem [3 ]
Mbaye, Papa [1 ]
Khardani, Salah [3 ]
Yao, Anne-Francoise [1 ,4 ]
机构
[1] Univ Clermont Auvergne, Lab Math Blaise Pascal, Aubiere, France
[2] Univ Djibouti, Fac IUT I, Dept Stat, Balbala, Djibouti
[3] Univ El Manar, Fac Sci Tunis, Lab Modelisat Math Stat & Anal Stochast M2SAS, Tunis, Tunisia
[4] Ecole Polytech, Ctr Math Appl, Paris, France
关键词
Kernel density estimator; Riemannian manifolds; mixing condition; stochastic process; central limit theorem;
D O I
10.1080/10485252.2024.2382442
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is related to the issue of the density estimation of observations with values in a Riemannian submanifold. In this context, Henry and Rodriguez ((2009), 'Kernel Density Estimation on Riemannian Manifolds: Asymptotic Results', Journal of Mathematical Imaging and Vision, 34, 235-239) proposed a kernel density estimator for independent data. We investigate here the behaviour of Pelletier's estimator when the observations are generated from a strictly stationary alpha-mixing process with values in this submanifold. Our study encompasses both pointwise and uniform analyses of the weak and strong consistency of the estimator. Specifically, we give the rate of convergence in terms of mean square error, probability, and almost sure convergence (a.s.). We also give a central-limit theorem and illustrate our proposal through some simulations and a real data application.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Stochastic heat equations with values in a Riemannian manifold
    Roeckner, Michael
    Wu, Bo
    Zhu, Rongchan
    Zhu, Xiangchan
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 205 - 213
  • [2] Kernel density estimation on Riemannian manifolds
    Pelletier, B
    STATISTICS & PROBABILITY LETTERS, 2005, 73 (03) : 297 - 304
  • [3] ON THE DENSITY OF THE SIMULATED ANNEALING PROCESS FOR A RIEMANNIAN MANIFOLD
    CONCORDET, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (11): : 1193 - 1196
  • [4] MANIFOLD LEARNING BASED ON KERNEL DENSITY ESTIMATION
    Kuleshov, A. P.
    Bernstein, A., V
    Yanovich, Yu A.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2018, 160 (02): : 327 - 338
  • [5] Kernel Density Estimation on Riemannian Manifolds: Asymptotic Results
    Guillermo Henry
    Daniela Rodriguez
    Journal of Mathematical Imaging and Vision, 2009, 34 : 235 - 239
  • [6] PHOTOMETRIC VALUES ON RIEMANNIAN MANIFOLD
    KIREITOV, VR
    DOKLADY AKADEMII NAUK SSSR, 1980, 252 (01): : 27 - 33
  • [7] Kernel Density Estimation on Riemannian Manifolds: Asymptotic Results
    Henry, Guillermo
    Rodriguez, Daniela
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2009, 34 (03) : 235 - 239
  • [8] Stochastic collocation with kernel density estimation
    Elman, Howard C.
    Miller, Christopher W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 : 36 - 46
  • [9] HEAT KERNEL OF A COMPLETE RIEMANNIAN MANIFOLD
    YAU, ST
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1978, 57 (02): : 191 - 201
  • [10] Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams
    Le, Tam
    Yamada, Makoto
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31